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Summary. This paper presents a comparison among efficient techniques for uncertainty 
quantification and robust optimization. Two test cases based on a thin airfoil representative of 
an open-rotor airfoil are studied at transonic conditions. The focus is on the precise estimation 
of the statistics of the aerodynamic coefficients. Thanks to two CFD-based surrogate models, 
the two test cases have been studied extensively without engaging the large computational 
cost normally associated with direct CFD evaluations. To address the high-dimensionality of 
the uncertainty space, we investigate two different approaches within the framework of 
generalized polynomial chaos expansion and least-square approximation for stochastic 
surrogate modeling. The first approach utilizes compressed sensing techniques, specifically 
Least Angle Regression and Basis Pursuit Denoising methods and the second approach named 
'gradient-enhanced' least-square approximation, takes advantage of the adjoint capabilities of 
modern CFD solvers for efficient gradient computation. A combination of the two, 
associating gradient information with compressed sensing is also benchmarked.  
 
1 INTRODUCTION 

In recent decades, the significant advancements in computing power have propelled 
Computational Fluid Dynamics (CFD) to the forefront of industrial design, particularly in the 
aeronautical sector. However, it has become increasingly evident that discrepancies exist 
between the idealized conditions of numerical simulations and the complexities of real-world 
applications. This realization has spurred a growing interest in exploring the sensitivities of 
optimal shapes to uncertain parameters and in developing robust design techniques. 

Uncertainties can be broadly categorized into two types: epistemic and aleatory. Epistemic 
uncertainties arise from our limited understanding and modeling of complex physical 
phenomena. In this context, Uncertainty Quantification (UQ) plays a crucial role in enhancing 
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the reliability of our physical models. On the other hand, aleatory uncertainties pertain to the 
inherent variability in shape or flow conditions, which, although uncontrollable, must be 
considered in the design process. Deviations from the intended design can occur due to 
manufacturing tolerances, as well as temporary and permanent degradation of aerodynamic 
surfaces over their lifespan. These phenomena will be particularly pregnant on open rotor 
blades, these blades having a complex aerodynamic design and being exposed to free flow 
during their life span. 

To ensure the robustness of aerodynamic shapes obtained through numerical optimization, 
it is imperative to integrate uncertainties into the design process. While adjoint approaches in 
shape optimization have provided the capability to handle high-dimensional design spaces, 
the challenge of managing a large number of uncertain inputs, often referred to as the "curse 
of dimensionality," remains a significant bottleneck for the widespread application of UQ 
techniques in industrial settings, especially when coupled with High-Fidelity (HiFi) CFD 
simulations. 

In this paper, we address the challenges posed by uncertainties in the context of transonic 
airfoil design for open rotor applications. For UQ methods, the focus of this paper will be on 
efficient polynomial chaos techniques which can afford a reduced number of expensive CFD 
computations: compressed sensing (Least Angle Regression [3], Basis Pursuit Denoising [9]) 
and adjoint-gradient enhanced variants [7], [8] of the standard least-square approximation. 
The open-source toolboxes OpenTURNS [5] (http://openturns.github.io/) and eQuadrature [4] 
(https://equadratures.org/) are used to apply these techniques on our test cases. The chosen 
test case is a 2D airfoil studied in transonic conditions, representative of the airfoil which 
could be found on open rotor blades. In a first step, shape design parameters are considered 
uncertain and a benchmark of the different methods is made on their ability to efficiently 
estimate the statistics associated with the aerodynamic coefficients.  In a second step, a robust 
optimization is carried, considering uncertainties affecting the shape parameters. 

2 METHODOLOGY 

2.1 Uncertainty quantification  
Polynomial Chaos Expansion is a well established approach [1] to derive a surrogate 

model approximating a function of interest 𝑓𝑓(𝒙𝒙) in the form of multivariate polynomials 
𝐻𝐻𝒋𝒋(𝒙𝒙): 

𝑓𝑓(𝒙𝒙) = � 𝑐𝑐𝒋𝒋𝐻𝐻𝒋𝒋(𝒙𝒙),
∞

𝒋𝒋

 
 
(1) 

where 𝒙𝒙 is a d-dimensional vector of independent random variables, j the multi-index 
associated with univariate polynomials and 𝑐𝑐𝒋𝒋 the polynomial coefficients. The PCE 
coefficients can be computed by various methods. In particular, when considering non-
intrusive techniques, the different approaches can be essentially divided into two families: i) 
Spectral projection methods, where the coefficients are computed by the numerical 
approximation of the projection of 𝑓𝑓(𝒙𝒙) on the orthogonal polynomial basis using classical 
Gauss quadrature and their more efficient sparse versions [13]. ii) Collocation methods, where 
the PCE coefficients are computed by fitting Eq. (1) to a given number of collocation points 
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in the uncertain space, to best reproduce the exact function value, leading to a classical Least 
Square Approximation (LSA). 

2.1.1 Gradient-enhanced techniques 
When gradient information is available, it can be used to introduce additional equations for 

the considered collocations points while reducing their number in order to achieve full rank. 
Since the gradient at each collocation point provides d additional scalar information, the total 
number of samples can be ideally reduced by the same factor with respect to the standard 
LSA formulation. However, attention has to be paid to accuracy issues in computing the 
derivative information, as often occurs for adjoint solvers employed in CFD applications. In 
order to reduce the sensitivity from numerical noise affecting the gradient accuracy, a null-
space method has been proposed in [2] showing how this approach can achieve improved 
accuracy, especially for standard deviation, on a turbomachinery test case. The same method 
as implemented in the eQuadratures toolbox is employed here to compute the solution of the 
Gradient-Enhanced LSA (LSA-GE) problem. 

2.1.2 Compressed sensing techniques  
When dealing with very limited amount of data (e.g. as a direct consequence of expensive 

function evaluations) resulting in an underdetermined system for Eq. (1), an alternative 
solution can be sought in a sparse form, i.e. by minimizing the number of non-zero 
coefficients. Indeed, although real PCE models are not truly sparse, they are expected to be 
compressible, i.e. to feature a rapid decay in the magnitude of the coefficients at increasing 
order of the expansion, with most of the variance being captured by a few terms. This 
provides the rationale behind the compressed sensing approach leading to the Basis Pursuit 
Denoising (BPDN) [9] as well as to LARS [3] methods where the regressors are added 
according to their correlation with the current residual and the PCE coefficients are then 
updated using a least angle strategy. It should be noted that LARS with the LASSO (Least 
Absolute Shrinkage and Selection Operator) modification can be interpreted as a l1-
optimization solver. Both techniques, BPDN and LARS will be considered in the present 
study. In particular, for LARS, the implementation available in the open-source library 
OpenTURNS [5] is employed. 

Moreover if gradient information is available, one can still search for a sparse PCE, using 
the compressed sensing techniques described above. This will lead to the BPDN-Gradient 
Enhanced (BPDN-GE) and the LARS-Gradient Enhanced (LARS-GE) methods. Only the 
first one has been implemented and tested in this work. 

2.2 Robust optimization 
In this section, we present the methodology employed to solve a robust optimization 

problem. Our approach involves formulating the objective and constraints as a linear 
combination of the statistical moments of one or multiple quantities of interest (QoI). These 
QoIs are considered stochastic due to their dependence on uncertain variables affecting the 
problem. While the distribution of the design variables is known, we leverage the previously 
discussed UQ techniques to efficiently compute the statistical moments of the QoIs at each 
iteration of the optimization process (Figure 1). The problem treated is of the following form: 
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Min 𝜇𝜇𝐶𝐶𝐶𝐶 + 𝑘𝑘𝜎𝜎𝐶𝐶𝐶𝐶, 
With 𝜇𝜇𝐶𝐶𝐶𝐶 ≥  𝜇𝜇𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 

(2) 

 

 
Figure 1: Robust optimization chain. 

where 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation, respectively, 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶 are generic 
aerodynamic coefficients, and 𝑘𝑘 a multiplication factor. In this study, we restrict our attention 
to a problem where the design variables are all stochastics, we denote them as {𝑥𝑥𝑖𝑖}1≤𝑖𝑖≤𝑑𝑑 , 𝑑𝑑 ∈
ℕ. The variables considered by the optimizer are the mean of the design variables, noted 
{𝜇𝜇𝑖𝑖}1≤𝑖𝑖≤𝑑𝑑. Except for the variable mean, the PDF shape is considered constant across the 
design space, for all the design variables. This framework, although restrictive, still allows us 
to address relevant cases, such as when aerodynamic parameters are known with a certain 
level of precision or when manufacturing processes introduce constant variability in the 
shape. In this work, the robust optimization problem will be solved using gradient descent 
algorithms. A method to compute the gradient of the statistical moments is then needed. As 
explained in [7] §II.C.3, we leveraged PCE properties to compute theses gradients by finite 
difference, but without the need to perform additional DoEs. 
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3 TEST CASE 

In this study we will use a test case defined in the frame of the NEXTAIR project by Safran. 
This test case is based on the study of a NACA 16-103 airfoil at transonic conditions. This 
airfoil has a maximum thickness of 3% and is chosen to be representative of an open rotor 
propeller at 75% span. It is simulated by solving the RANS equations, using the elsA code [6] 
(ONERA-SAFRAN property). The computations are performed on a structured mesh built 
around the airfoil using a O4H topology and featuring ~70k cells; the Roe’s scheme is 
employed for the spatial discretization of the convective fluxes and the Spalart-Allmaras 
model for turbulence modelling.  The considered reference flow conditions are Mach = 0.85, 
Altitude of 37000 ft and angle of attack of 1°. The International Standard Atmosphere (ISA) 
is used to obtain the density, dynamic viscosity and temperature at the chosen altitude leading 
to a Reynolds number of 3.66 million. The corresponding Mach field computed around the 
airfoil is illustrated in Figure 2. 

 
Figure 2: Mach field around the airfoil at the considered transonic conditions. 

3.1 UNCERTAINTY QUANTIFICATION TASK 

 
Figure 3: Correlation length (left) and standard deviation functions (right). 

The fluid problem is made stochastic by introducing uncertainties, both on the shape of the 
airfoil and on the boundary conditions. To model the geometric uncertainties, a Gaussian 
deformation field is applied on each point of the airfoil, prescribing a normal displacement of 
the point. This Gaussian field, noted 𝑔𝑔(𝑚𝑚), is described by a covariance function given by Eq. 
(3) and a constant null mean. The variable 𝑚𝑚 designs the curvilinear abscissa position, which 
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varies from 0 at the leading edge to 1 at the trailing edge. 
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚1, 𝑚𝑚2) = 𝜎𝜎(𝑚𝑚1)𝜎𝜎(𝑚𝑚2) exp �−0.5 (𝑚𝑚1−𝑚𝑚2)2

𝐿𝐿(𝑚𝑚1)𝐿𝐿(𝑚𝑚2)�. (3) 
 

The correlation length function 𝐿𝐿(𝑚𝑚) is chosen such that it is smaller near the leading and 
trailing edge, and larger in the middle of the profile, following a parabolic function shown in 
Figure 3. The function 𝜎𝜎(𝑚𝑚) is also chosen such that larger deformations are more likely to 
occur in the middle of the profile, but their amplitude decreases to reach 0 at the leading and 
trailing edge (Figure 3). Thanks to this covariance function and its mean, the Gaussian 
process is entirely defined and can be evaluated on every point of the mesh. However, for our 
application, we would like to model the shape uncertainty with a limited number of 
parameters. For that purpose, we perform a Karhunen-Loève (KL) decomposition of the 
Gaussian field, which can be written: 

𝑔𝑔(𝑚𝑚) =  � �𝜆𝜆𝑖𝑖𝜙𝜙𝑖𝑖(𝑚𝑚)𝜉𝜉𝑖𝑖

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖=1

. (4) 

where 𝜆𝜆𝑖𝑖 and 𝜙𝜙𝑖𝑖 are the eigenvalues and eigenvectors of the covariance matrix, respectively. 
𝜉𝜉𝑖𝑖 are mutually independent random Gaussian variables with zero mean and unit standard 
deviation. As the deformations along 𝑚𝑚 are strongly correlated in space, the eigenvalue 
spectrum typically displays a very quick decrease, so one can truncate the KL expansion to a 
given number of modes. In this work, we decide to truncate the decomposition by using 5 
modes since it guaranties to conserve the 94.47% of the total variance of the process. We 
impose independent deformation fields on the pressure and suctions sides of the profile and 
each of them is then described by 5 modes. As a result, the overall deformation field is 
parametrized by 10 variables, the 5+5 𝜉𝜉𝑖𝑖 normal variables. To insure numerical robustness, we 
decide to use truncated normal distribution between [−3𝜎𝜎, 3𝜎𝜎] instead of the infinite support 
normal distribution for the 𝜉𝜉𝑖𝑖 variables. Figure 4 presents nine realizations of the deformation 
fields. Once the 𝑔𝑔(𝑚𝑚) function is computed, it is used to deform the original mesh. Since the 
deformation magnitudes are small in this UQ task, the mesh quality metrics are kept very 
close from their original values. Figure 5 shows 100 deformed profiles resulting from the 
described parametrization. 

 

 
Figure 4: Realization of nine deformation fields 

In addition to shape uncertainty, uncertainties affecting two aerodynamic conditions are also 
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considered: the free flow temperature and the infinite velocity. These variables are made 
uncertain by adding to them a term following a Beta distribution. To sum up, this test case has 
twelve uncertain variables: 

• 𝜉𝜉𝑖𝑖 , 𝑖𝑖 ∈ [1,10] follow a truncated normal Gaussian with 𝜇𝜇 = 0, 𝜎𝜎 = 1, between 
[−3,3]. 

• Δ𝑇𝑇  follows a Beta(4,4) distribution between bounds [−2, 2] 𝐾𝐾. 
• Δ𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 follows a Beta(4,4) distribution between bounds [−1,1] 𝑚𝑚/𝑠𝑠. 

 
As a first step towards the use of this test case in a UQ context, a surrogate model was 

developed by Safran to reduce computational cost typically associated with CFD simulations. 
The construction of this surrogate model involved a two-step process. Initially, a Design of 
Experiment (DoE) comprising 300 simulations within the 12-dimensional design space was 
performed. Subsequently, a Kriging model was employed to enrich the DoE by sequentially 
adding samples in regions with the highest Drag variance, up to a total of 600 CFD runs. 
Three Kriging models are made on these 600 computations, to model respectively the lift, the 
drag and the glide ratio coefficients. These models are validated computing Q2 cross 
validation scores, which are all above 0.94 (the lowest value being obtained for the glide 
ratio). 

 

 
Figure 5: Sampling of 100 generated surfaces owing to the prescribed geometric uncertainty fields. 

3.2 Robust optimization task 
For the robust optimization task, a different parameterization was introduced consisting of 

14 design variables which affect the shape of the propeller profile. Five design variables are 
used to control the camber law of the airfoil, on five control points equally distributed on the 
chord. In addition, five points are used to control the thickness distribution, keeping the 
maximum thickness constant. First the position of maximum thickness is made variable. 
Second, the thickness distribution is controlled by two control points at ¼ and ¾ of the chord, 
both on the pressure and suction sides (see Figure 6 bottom). Lastly, the leading edge and 
trailing edge radius can be modified by a multiplication factors, both on the pressure and 
suction sides, which adds four additional design variables. Similarly, to the UQ test case, a 
Kriging surrogate model was made at Safran, using a sequentially enriched DoE of 1200 CFD 
simulations. 

This model can then be used to perform determinist optimization of the airfoil shape. To 
perform robust optimization, the 14 design variables are considered as stochastic variables. 
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After normalizing them between [0, 1], they are modeled by a Gaussian law with 𝜇𝜇 =
0.5, 𝜎𝜎 = 0.1, truncated to lay between [𝜇𝜇 − 3𝜎𝜎, 𝜇𝜇 + 3𝜎𝜎]. As explained in §2.2, the values of 𝜇𝜇 
associated with the 14 PDFs of the uncertain design parameters are used as the unknown 
variables of the robust optimization problem. To avoid extrapolation outside the validity 
domain of the surrogate model, these variables are bounded between 𝜇𝜇𝑖𝑖 ∈ [0.3,0.7] so that 
they do not take values outside the [0,1] range. The standard deviation is chosen to be quite 
large, to enhance high-order interactions in the stochastic problem. 

 

 
Figure 6: Position of the camber (top) and the thickness (bottom) control points. 

4 UNCERTAINTY QUANTIFICATION RESULTS 

4.1 Monte Carlo results 
 First, in order to provide reference values, statistical moments are computed by the Monte 

Carlo method on a large sample numbers of samples, of the order of ~10⁸, obtained from the 
UQ surrogate model. The results are given with their 99% confidence interval. The following 
notation is adopted: 

 
𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 4.123[86 /93]e-01 means 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∈ [0.412386, 0.412393], (5) 

Table 3: Reference values obtained by the Monte Carlo method. 

Quantity Lift Drag Glide Ratio 
Mean 4.123[86/93] e-01 8.36[79/81] e-03 4.9281[40/94] e+01 

Standard Deviation 1.214[37/82] e-02 2.264[00/84] e-04 1.032[42/79] e+00 

4.2 PCE Results 
In this section the results obtained with the different PCE methods mentioned in §2 are 

presented. They are presented as error color maps (Figure 7 and Figure 8), plotting the error 
with respect to the reference value obtained via the Monte Carlo analysis, as a function of the 
number of samples considered to build the PCE (y-axis), and of the order of the polynomial 
(x- axis). The error is expressed in percentage: 

𝑒𝑒(𝛾𝛾) = �
𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟 − 𝛾𝛾

𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟
� ∗ 100. (6) 

The number of samples corresponds to the size of the DoE, which is here created by using a 
Sobol sequence. In this task, we look for a method that achieves the higher accuracy using the 
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smallest number of sample, as this number of sample is representative of CFD runs, when a 
high-fidelity function evaluations are directly engaged in the optimization process. In Figure 7 
and Figure 8 a “continuous” representation of the results by means of graphic interpolation is 
adopted for an improved illustration although quantities along both axes are integer-values 
functions.  
 

 
Figure 7: Error map for the mean (top) and the standard deviation (bottom) of the drag coefficient. 

 
Figure 8: Error map for the mean (top) and the standard deviation (bottom) of the lift coefficient. 

From these figures, we can see that the combination of compressed sensing and gradient 
information (BPDN-GE method) displays the best behavior. Thanks to this method, one can 
estimate with less than 1% error the standard deviation of the drag with a DoE of size 60, on 
an airfoil affected by 12 uncertain variables. If the gradient information is not available, the 
compressed sensing method LARS shows that one would need a DoE of size 140 to estimate 
the drag standard deviation with the same level of error, while the baseline method LSA 
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necessitates 230 samples to reach the same error level. 

5 ROBUST OPTIMIZATION RESULTS 
In this section, we present the results obtained on the robust optimization test case 

presented in §3.2, which has 14 design variables. The robust optimization problem considered 
is the following: 

Min 𝜇𝜇𝐶𝐶𝐶𝐶 + 10𝜎𝜎𝐶𝐶𝐶𝐶 , 
With 𝜇𝜇𝐶𝐶𝐶𝐶 ≥  0.4125. 

(20) 

To serve as a comparison point, a determinist optimization problem is also considered: 
Min 𝐶𝐶𝐶𝐶, 

With 𝐶𝐶𝐶𝐶 ≥  0.4125. 
(20) 

As explained in §2.2, in the robust optimization, 𝜇𝜇 and 𝜎𝜎 are evaluated at each iteration of 
the optimizer by building a PCE with the relevant technique on a DoE of a certain size. The 
gradients of the statistical moments with respect to the design parameters (here the 𝜇𝜇 values 
parametrizing the PDF of the 14 design variables) are computed by finite differences, as 
previously mentioned. If the PCE method is not very efficient, a large DoE will be needed to 
estimate the moments of the aerodynamic coefficients, which will lead to a very large number 
of total calls to the CFD solver at the end of the robust optimization. Different PCE methods 
and DoE size have been tested on this test case, the results are presented in Table 4. 

Table 4: Comparison of the results for the robust optimization test case using different UQ techniques. 
Reference deterministic optimization results are also included. Drag values are reported in drag counts (d.c.), i.e. 

as 1/10000 of the CD value. 

 
𝝁𝝁𝑪𝑪𝑪𝑪 

(d.c.) 
𝝈𝝈𝑪𝑪𝑪𝑪 

(d.c.) 𝝁𝝁𝑪𝑪𝑪𝑪 𝝈𝝈𝑪𝑪𝑪𝑪 Optimizer 
iterations 

DoE 
size 

 𝑓𝑓(𝒙𝒙) 
Eval. 

𝜕𝜕𝑓𝑓 𝜕𝜕𝑥𝑥j⁄  
Eval. 

Baseline 83.9 4.2 0.4124 0.022 - - - - 

Deterministic 
Optimization 

80.9 2.5 0.4154 0.022 39 - 39 15 

Robust 
Optimization LSA 
(Ref) 

81.3 1.8 0.4142 0.020 30 480 14 400 - 

Robust 
Optimization LSA 

81.4 1.9 0.4160 0.020 21 240 5040 - 

Robust 
Optimization 
LSA-GE 

81.3 1.8 0.4142 0.020 54 30 1620 1620 

Robust 
Optimization 
BPDN-GE 

81.2 1.8 0.4143 0.020 23 30 690 690 

  
Figure 9 presents the PDFs of the drag coefficient of the different shapes obtained by the 

different optimization processes. These PDFs have been obtained via a Monte Carlo analysis 
performed afterwards. One can observe that the deterministic optimization achieves a gain 
with respect to the baseline both on the mean of the drag (from 83.9 d.c. to 80.9 d.c.) and on 
its standard deviation (from 4.2 d.c. to 2.5 d.c.). All the robust optimization achieve similar 
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results, reducing further the drag variance (from 2.5 d.c. to 1.8 d.c.), at the cost of a slight 
degradation of the drag mean (from 80.9 d.c. to 81.2 d.c.). However, it is shown that the PCE 
methods that leverage the gradient information (LSA-GE and BPDN-GE) lead to an important 
reduction of the number of calls to the function evaluations that are necessary to perform the 
robust optimization. Here, we recall that CFD primal and adjoint runs are indeed replaced by 
the Kriging surrogate model. The BPDN-GE methods enabled the robust optimization with 
690 equivalent primal and adjoint CFD runs leading to the same result obtained through more 
computationally expensive methods. Although this still represents a quite high computational 
cost, it is worth to remind that the treated problem has 14 dimensions, and that the cost of 
building the surrogate model was of 1200 CFD runs. In addition, further cost reduction can be 
expected when implementing a re-use strategy, which will allow one to re-use the points 
already computed in previous DoEs.  

 

 
Figure 9: Probability density function of different airfoil shapes obtained by deterministic and robust 

optimization (left) and comparison of the resulting airfoil shapes (right). 

6 CONCLUSIONS 
This work treats an uncertainty quantification problem and a robust optimization problem 

with 12 and 14 uncertain parameters, respectively. Five methods to compute polynomial 
chaos expansion have been compared with the primary goal of minimizing computational 
costs (in the perspective of a CFD-driven process) while accurately estimating the mean and 
variance of the aerodynamic coefficients for a transonic airfoil representative of an open rotor 
blade. It is shown that ‘gradient enhanced’ and ‘compressed sensing’ methods can achieve 
significant performance gain when compared to the standard least-square approximation. 
More precisely, the method which combines the two approaches, BPDN-GE, achieves the 
most significant gain in both the uncertainty quantification and robust optimization tasks. On 
the UQ task the gain is a factor 4, while on the robust optimization, a factor 7 is found, 
compared to the classical least square approximation method. 

On the robust optimization task, it has been shown that the efficient PCE methods allow a 
great reduction of the computational cost, which can become of the same order of the one 
associated to generation of the global surrogate or even smaller. Thus, such efficient UQ 
techniques can enable CFD-driven robust optimizations (to avoid surrogate modelling errors) 
and pave the way to treat more ambitious 3D cases. In addition, further cost reduction can be 
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expected by implementing a re-use of point strategy. 
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