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ABSTRACT  

Small strain shear modulus 𝐺௠௔௫  is an important parameter for design of foundations of fixed offshore structures. The 
preferred reference method for 𝐺௠௔௫  is the seismic velocity test (SVT) performed as part of a seismic cone penetration 
test (SCPT). SVTs provide in-situ 𝐺௠௔௫  values for discrete depth sections of SCPTs.  
 
This paper focusses on added value achieved by (1) generation of 15 million synthetic 𝐺௠௔௫  profiles to 50 m depth and 
(2) a 𝐺௠௔௫  zonation map for the IJmuiden Ver Wind Farm Sites Alpha and Beta (offshore Netherlands). The synthetic 
𝐺௠௔௫  profiles were derived from a data set of 51 SCPT profiles, 250 CPT profiles and 2D UHR seismic reflection traces 
along survey track lines spaced at about 70 m. The quality of the SCPT data and UHR seismic reflection data was state-
of-the-art (as of 2021). The data process included the use of a (1) multi fidelity data fusion statistical framework and 
(2) machine learning by a convolutional neural network. The synthetic 𝐺௠௔௫  data were the basis for the 𝐺௠௔௫ zonation 
map used to enhance an integrated ground model for the wind farm sites. Particularly, the map can be used to quickly 
identify and constrain areas which are favourable and challenging for design of monopiles and other common foundation 
types typically considered for offshore wind turbines.  
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1. Introduction 

The primary purpose of developing an integrated 
ground model for an offshore wind farm during the pre-
FEED or concept design stage is to de-risk the site by 
reducing uncertainties where possible. This includes 
identifying and delineating spatial areas that have 
features impacting design.  

Small strain shear modulus 𝐺௠௔௫ is an important 
design driver of foundations of fixed offshore structures, 
with the preferred (in-situ) reference method for 
obtaining 𝐺௠௔௫  being the seismic velocity test (SVT) 
performed as part of the seismic cone penetration test 
(SCPT).  

This paper focusses on enhancement of an integrated 
ground model developed for IJmuiden Ver Wind Farm 
Sites Alpha and Beta (offshore Netherlands) in two ways:   

 A first-ever large-scale prediction of shear 
modulus parameter values (i.e. 15 million 
synthetic (or predicted) 𝐺௠௔௫  profiles to 50 m 
depth) based on 2D UHR (ultra high resolution) 
seismic reflection data used for incorporation into 
the integrated ground model is presented; 

 An illustration of how 15 million synthetic 𝐺௠௔௫  
profiles can be used to add value to the integrated 
ground model by creating a zonation map to 

quickly identify and constrain areas which are 
favourable and challenging for design.   

 
The presented approach is covered by ISO (2021) and 

meets key requirements for derived values of 𝐺௠௔௫  for 
characterizing any site: (i) high quality data, 
(ii) abundantly available and (iii) cheap to acquire or 
obtain. 

2. Project site and geology 

Ijmuiden Ver Windfarm Sites Alpha and Beta 
(IJVWFS) is located approximately 62 km off the west 
coast of the Netherlands (Fig. 1) in the Dutch sector of 
the Southern North Sea. Fig. 1 shows the layout, with 
values of coordinates in metres. The total surface area of 
IJVWFS is approximately 439 km2. Water depths range 
between 20 m and 45 m.  

Site investigation data for IJVWFS include results 
from geological, geotechnical and marine geophysical 
data. A complete database of source data is in the public 
domain (offshorewind.rvo.nl). The source data of 
particular interest for this paper comprises of 51 SCPT 
investigation locations, 236 PCPT (excludes the CPTs 
from the SCPT locations) investigation locations, 10 
PSSL (P & S suspension logger, borehole geophysical 
logging) investigation locations and 2D UHR data 
acquired along survey track lines spaced at about 70 m.  



 

 

 
Figure 1. IJmuiden Ver Windfarm Sites Alpha and Beta 
(IJVWFS) Project Site.  

 

The integrated ground model developed for this site 
includes six soil provinces and eight soil units. Fig. 2 and 
Fig. 3 give an overview of soil units encountered in the 
shallow subsurface (between seafloor and 50 m below 
seafloor BSF) and how their upper and lower boundaries 
correlate to the seismic horizons identified at IJVWFS. 
The IDs of the seismic horizons are R00 to R20 (Fig. 2). 
Sediments and post-depositional processes from the 
Pleistocene to Holocene dominate the geological 
framework of IJVWFS (Fugro, 2023a).  

 
Figure 2. Soil Units at IJVWFS.  

3. Synthetic small strain shear modulus    

3.1. General workflow 

The general workflow for synthetic 𝐺௠௔௫  profiles is 
according to that described by Carpentier et al. (2021) for 
synthetic profiles of CPT cone resistance. Particularly, 
the workflow includes the use of convolutional neural 
networks (CNNs). Details are given in Fugro (2023b), 
available on offshorewind.rvo.nl.  

3.2. Input data 

Three key elements were used as input data for 
synthetic parameter generation. 

 Geophysical data: 450 2D UHR lines, including 
stacking velocities per common depth point 
(CDP); 

 Geotechnical data: profiles of 𝑞௡ (net cone 
resistance) and 𝑣௦ (shear wave velocity) from 287 
unique geotechnical investigation locations 
(PCPT & SCPT) and values of 𝑣௦ from SVT tests 
carried out at 51 SCPT locations; 

 Ground model information: seismic horizons per 
soil unit along with soil density (𝜌) information 
for all 2D UHR lines.

 
Figure 3. Conceptual model of soil units and seismic horizons at IJVWFS
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For the geotechnical data, this paper also uses the 

term ‘measured’ to distinguish from synthetic 
(predicted). Strictly,  𝑞௡, 𝑣௦ and 𝐺௠௔௫ values derived 
from 𝑣௦ values are derived values, not measured values.  

The input geophysical data at a CDP location is called 
a ‘seismic trace’. A seismic trace is associated with four 
data types or attributes in the form of 1D profiles. These 
attributes are: (i) soil unit; (ii) interval velocity; 
(iii) instantaneous amplitude; and (iv) acoustic 
impedance. Each seismic trace is also associated with 
fixed x-y coordinates of the CDP and information on 
depth in metres below seafloor and depth below LAT 
(lowest astronomical tide). To enhance the accuracy of 
synthetic 𝐺௠௔௫  profiles and prevent a 'garbage-in-
garbage-out‘ scenario, a key step was cleaning and 
processing of 𝑣௦ input data (CPT profiles and SVT data 
points). This key step included (1) distinguishing a 
primary 𝑣௦ dataset and a secondary 𝑣௦ dataset and 
(2) application of a multi fidelity data fusion (MFDF) 
statistical approach, i.e. use of a higher accuracy sparse 
dataset (SVT) to enhance a lower accuracy larger dataset 
(CPT). It can be noted here that 𝑣௦ data were used as 
input. Output values of 𝑣௦ were converted to 𝐺௠௔௫ values 
using the following equation: 

𝐺௠௔௫ = 𝑣௦
ଶ  ∙ 𝜌  

The primary dataset refers to schematised 𝑣௦ profiles 
at investigation locations where SCPTs were performed. 
The 𝑣௦ profile schematisation was based on the SVT data 
and subsequently fine-tuned, where required, based on 
CPT data and PSSL 𝑣௦ data, where available. 

The secondary dataset refers to continuous 𝑣௦ profiles 
at all 287 unique CPT investigation locations. 
Development of these 𝑣௦ profiles included the use of a 
site-specific CPT-based correlation. 

Comments on the MFDF methodology for the 
secondary dataset are as follows: 

 𝑣௦ based on SVT data was used as reference; 
 𝑣௦  correlation by Robertson and Cabal (2015) was 

used as a basis, modified using a yield stress ratio 
(YSR) based factor: 

𝑣௦ = 𝑌𝑆𝑅௕  ∙  ቈ𝛼௩௦  ∙
(𝑞௧ − 𝜎௩଴)

𝑝௔

቉

଴.ହ

    

where  𝛼௩௦ = 10(଴.ହହ ூ೎ ା ଵ.଺଼) and  
where shear wave velocity 𝑣௦ is in m/s and 
corrected cone resistance 𝑞௧, total in situ vertical 
stress 𝜎௩଴ and atmospheric pressure 𝑝௔  are in kPa. 
Factor 𝑏 is a soil unit specific exponent and 𝐼௖ 
refers to (CPT) soil behaviour type index; 

 Pairing of SCPT derived 𝑣௦ values and CPT 
derived 𝑣௦ values to determine the best fit YSR 
factor on a soil unit basis; 

 Use of depth-specific weight factors where a 
higher weightage was assigned to a depth range 
between 5 m and 25 m BSF (below seafloor) 
accounting for (i) reliability of SCPT data, and (ii) 
the zone of influence for monopile and jacket pile 
designs. 

Fig. 4 illustrates an example of 𝑣௦ input data for an 
investigation location: CPT based profile (orange dashed 

line) as described above and datapoints from SVTs (black 
markers). Fig. 4 also includes soil unit information. 

 
 

 
Figure 4. Example of 𝑣௦ input data.  

Another key step was pairing of the geotechnical data 
from the investigation locations with the seismic traces. 
The 𝑣௦ data from each investigation location were paired 
with the 10 closest seismic traces in order to teach the 
CNN model that minor variations observed in the seismic 
traces should be considered as noise and can be 
disregarded, i.e. preventing the CNN from over-fitting.  

The measured horizontal offset between each 
investigation location and the closest seismic trace was 
observed to be generally less than 10 m at seafloor. It is 
important to note however that expanded combined 
uncertainties (coverage factor 𝑘 = 2) associated with 
geospatial positions of (S)CPT locations and seismic 
traces, are on the order of 2.0 m and 3.5 m respectively 
(Peuchen et al. 2023).  

3.3. CNN phases 

The CNN workflow included two phases: (i) a 
training phase for the CNN model to learn, and (ii) a 
validation phase where the performance of the trained 
model is evaluated with a validation dataset excluded 
from the training data (blind prediction).  

Out of 287 unique investigation locations, 10 
investigation locations were selected to form the 
validation dataset, i.e. for blind prediction (Fig. 5).  



 

The training phase utilized the remaining 277 
investigation locations, of which 222 investigation 
locations (approximately 80%) formed the network 
learning dataset, i.e. these were used to update the 
weights in the network. The remaining 55 locations 
(approximately 20%) formed the testing dataset, i.e. these 
were used to monitor the training progress and to 
terminate the process once the networks were sufficiently 
well trained. This 80-20 partition was found to secure a 
good amount of data for the model to learn, while also 
providing sufficient data for reliable monitoring. 

 
Figure 5. Division of input data into training, testing and 
validation datasets.  

During the training phase, the CNN model was 
trained on the training dataset (222 locations) and 
evaluated on the testing dataset (55 locations) to assess 
the model’s performance on new, unseen data. A single 
cycle of training the CNN model using a specific training 
dataset and testing dataset is termed an epoch. This 
training process is repeated by shuffling the locations 
assigned to the training and testing datasets between 
epochs. With each epoch, the CNN model is exposed to 
a different set of training locations. This allows the model 
to generalize better to new data.  

The loss function, as shown in Fig. 6, measures how 
well the CNN model is performing on the testing dataset 
during the training phase. The loss function is the mean-
squared error between the synthetic 𝑣௦ parameter values 
(predicted values) and the measured 𝑣௦ parameter 
(known values) in the testing dataset. As the CNN model 
improves during training with each epoch count, the loss 

function decreases. If the loss function stops decreasing 
significantly, it indicates that the model is no longer 
improving and may have reached the limit of what it can 
learn from the training data. Stopping training at this 
convergence point helps to prevent overfitting and 
ensures that the model generalizes well to new data. 

At this stage the CNN model is considered fully 
trained. The model can then be used as a production tool 
to generate synthetic 𝐺௠௔௫ profiles for all seismic lines. 

 
Figure 6. Example of convergence of loss function.  

3.4. Synthetic 𝑮𝒎𝒂𝒙 profiles 

The complete dataset of synthetic 𝐺௠௔௫  profiles for 
all 450 seismic lines can be found in the public domain 
(offshorewind.rvo.nl).  

Fig. 7 shows a comparison of measured (black lines) 
and synthetic (green lines) 𝐺௠௔௫  profiles values for the 
validation dataset (10 locations). In general, the 
predictions for the validation locations are assessed to be 
fair to good, with the mean profiles of the measured 𝐺௠௔௫  
parameter values captured well by the predicted profiles. 
Fig. 7 includes the soil units (background colours). The 
synthetic 𝐺௠௔௫  profiles include a maximum likelihood 
prediction along with high and low estimates of 50% and 
90% confidence intervals. Fig. 8 shows results of the 
(maximum likelihood) synthetic 𝐺௠௔௫  parameter values 
along an example seismic line.  

 
Figure 7. 𝐺௠௔௫  predicted and measured values for the validation set of CPT locations (blind predictions). 



 

 
Figure 8. 𝐺௠௔௫  prediction for UHR line G02-5083-P260 containing ~30,000 traces (~15 km long). 

 

4. 𝑮𝒎𝒂𝒙 zonation map 

4.1. Map features 

Fig. 9 shows the 𝐺௠௔௫  zonation map developed for 
IJVWFS. In general, the conditions at this site are 
observed to be fairly uniform with no dramatic 
differences.  

 
Figure 9. 𝐺௠௔௫  zonation; colour bar shows 𝐺௠௔௫

തതതതതതത  in MPa.  

The synthetic 𝐺௠௔௫  profiles provide high density and 
resolution of geotechnical data across the IJVWFS site, 
allowing the following fundamental features for the 𝐺௠௔௫  
zonation map: 

 Enhanced spatial zonation of the site based on 
𝐺௠௔௫ profiles; 

 A primary depth range of interest (i.e. from 
seafloor to 25 m BSF), considered as critical for 
geotechnical design of monopile foundations; 

The 𝐺௠௔௫  zonation map was developed according to 
the following procedure: 

1. IJVWFS was divided into spatial grids with 
position coordinates associated with each 
synthetic 𝐺௠௔௫  profile; 

2. Synthetic 𝐺௠௔௫  was considered the primary 
screening parameter; 

3. Available synthetic 𝐺௠௔௫  profiles were divided 
into 10 m depth segments and each depth segment 
was assigned a weight factor according to its 
expected significance with regards to foundation 
design (Table 1); 

4. A weighted 𝐺௠௔௫
തതതതതതത  was calculated at each position 

coordinate based on the 𝐺௠௔௫ profiles. The 
following formula was used: 

𝐺௠௔௫
തതതതതതത = ෍(𝑤௜ ∙ 𝐺௠௔௫ି௜)/𝑁௜ 

where 𝑤 = weight factor, 𝐺௠௔௫ = 𝐺௠௔௫  values 
per depth segment, 𝑁= number of depth segments, 
𝑖 = 1 to n with n = total number of data points; 

5. A colour scale was assigned to each value of 
weighted 𝐺௠௔௫

തതതതതതത as a visual aid.  

Table 1. Weight factors for 𝐺௠௔௫  zonation  
Depth segment 
[m BSF] 

Weight factor 
𝑤 [-]  

0.5 to 10 0.4 

10 to 20 0.3 

20 to 30 0.2 

30 to 40 0.1 

40 to 50 0 

 

4.2. Added value 

Three key advantages are identified for developing a 
𝐺௠௔௫  zonation map to enhance understanding of the site. 

 With 𝐺௠௔௫  a driving parameter in most 
calculation models, the 𝐺௠௔௫  zonation map can be 
used to quickly identify and constrain areas which 
are challenging for design; 

 The zonation map targets monopiles and can be 
used for most foundation types typically 
considered for offshore wind turbines; 

 A comparative assessment of the 𝐺௠௔௫ zonation 
with other maps developed for the site, e.g. the 
soil province map provides an enhanced 
understanding of the site and serves as an 



 

additional option to developers to refine cost and 
schedule estimates. 

 

4.3. Example of use of zonation map 

Fig. 10 presents an illustrative application of the use 
of this 𝐺௠௔௫  zonation map. It shows normalised bending 
moment at seafloor versus monopile rotation from 
vertical (degrees) at seafloor, for the two locations shown 
in Fig. 9: square marker (location IJV107) in the dark 
blue region on the south-west corner of IJVWFS, and star 
marker (location IJV092) appearing on the periphery of 
the dark blue region in the south-west corner of IJVWFS. 
The bending moment at seafloor on the y-axis for all 
plates is normalised by the bending moment (at seafloor) 
mobilized at 1 degree rotation calculated for location 
IJV092. 

The presented results were obtained by 
implementation of the 1D PISA approach (Byrne et al. 
2017) using Plaxis MoDeTo (Monopile designer manual, 
2023). Rule-based reaction curves of the Cowden clay 
and Dunkirk sand were used to model sand and clay 
layers at each location respectively (Byrne et al., 2017). 
Input parameters and parameter values for the analysis at 
the two locations can be found in Fugro (2023b). 
Monopile dimensions and loading conditions for the 
MoDeTo analysis were as follows: 

 Outer diameter of 8 m; 
 Wall thickness of 0.08 m; 
 Range of embedment lengths, length to diameter  

L/D = 4 and L/D = 6; 
 Horizontal load (monotonic and unidirectional) 

applied at 50 m above seafloor. 
  

 
Figure 10. Normalised bending moment at seafloor versus 
monopile rotation (degrees) at seafloor for two locations.  

5. Concluding remarks 

This paper presented a first-ever large scale 
prediction of 𝐺௠௔௫ profiles for a wind farm site using 2D 
UHR data. As for other synthetic geotechnical 
parameters (such as CPT cone resistance), it is important 
to note that the synthetic prediction process provides an 
approximation of relationships between (acoustic) 
seismic reflection data and (mechanical) geotechnical 
data.   

The presented 𝐺௠௔௫  zonation map illustrates 
opportunities for facilitating and optimizing foundation 
design. Further improvements could include: 

 Addition of contour lines for mapping or tracking 
similar profiles; 

 Addition of other supplementary screening 
parameters, such as synthetic (CPT) cone 
resistance; 

 Multiple weight factors to tailor 𝐺௠௔௫  zonation to 
specific foundation types, e.g. jacket foundations. 
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