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Summary. This study explores the use of machine learning (ML) models in predicting the 

macroscopic properties of heterogeneous composites. Traditional micromechanics parameters 

have limitations, thus ML models with and without feature engineering are utilized. For 

artificial neural network (ANN) models with feature engineering, microstructural descriptors 

from SEM images of nickel-based superalloys are used to predict hardness. 10 descriptors are 

selected to reduce the computational cost of the deep neural network (DNN) with the support 

of the shallow neural network (SNN), and accuracy is enhanced by incorporating two additional 

descriptors. The result surpasses existing physics-based models. Models without feature 

engineering employ a convolutional neural network (CNN) to predict the effective thermal 

conductivity of thermal insulation composite materials. The CNN model demonstrates accurate 

predictions for novel microstructures. ML models can achieve more efficient predictions than 

traditional methods, indicating their potential in advancing materials science. In summary, 

harnessing artificial intelligence to capture the scattering characteristics of heterogeneous 

materials enables both DNN and CNN models to achieve more efficient predictions compared 

to traditional methods. This highlights the potential of machine learning in advancing materials 

science and expediting the development of materials with desired properties. 

 

 

1 INTRODUCTION 

Composite materials with complex multi-scale microstructure typically exhibit great 

performance[1, 2]. At the same time, the complex multi-scale microstructure also hinders the 

accurate description and performance prediction of computational modeling of composite 

materials [3, 4]. Traditional computational models are constrained by limited input parameters, 

restricting their capacity to extract features from complex microstructures and effectively 

describe heterogeneous composites.[5]. For example, in the traditional micromechanics context, 
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the size and volume fraction of inclusions have long been regarded as the primary 

microstructural parameters dictating macroscopic properties[6-8]. Obviously, traditional 

models frequently struggle to achieve a comprehensive understanding of the intrinsic 

characteristics of materials, let alone analyze the impact of each feature on macroscopic 

properties. 

Machine learning (ML) automates the creation of computing models using training data, 

rather than relying on manually coded programs with predetermined logic. [9]. Therefore, with 

the accumulation of material experimental data and microstructural characterization, ML 

methods can be used to accurately and quickly perform multi-scale calculations of materials 

and correlate the material microstructure and macroscopic properties[10]. It also can infer the 

composition[11], microstructure[12], and even preparation process parameters[13], etc. from 

the macroscopic properties of the material, which can provide guidance for reverse design of 

materials[14, 15]. The integration of ML techniques into materials research is a key focus in 

modern scientific investigation, inspired by AI4Science [16, 17]. 

Artificial neural network (ANN) is one of the commonly used machine learning models, 

which can establish a complex nonlinear mapping between input material description 

parameters and output properties[18, 19]. ANN model preparation requires feature engineering 

based on educated intuition, whereas CNN models take images directly as input without the 

need for explicit feature engineering. As one of the deep learning models, convolutional neural 

network (CNN) has the ability to automatically extract features from input pictures. These 

features may influence material macroscopic properties in ways beyond existing physical 

models. The CNN model receives microstructural information more comprehensively and 

accurately predicts the macroscopic properties of the material[20, 21]. 

This research includes two ML models of artificial neural network (ANN) and convolutional 

neural network (CNN) models. ANN models correlate microstructural data with the hardness 

of alloy materials[22], whereas CNN models predict the effective thermal conductivity (ETC) 

of thermal insulation composites using microstructure images [23]. The execution processes of 

the ANN and CNN models are shown in Figure 1. In general, the process of using ML model 

includes data preparation, model training, and prediction. The difference between the two 

models is the presence or absence of feature engineering. The raw microstructural images are 

obtained by experiment or numerical simulation. After feature extraction and weight ranking, 

the image is converted into numerical values and used as the input of the ANN. While CNN 

directly takes the images as input. Then the two ML models are trained and tested. The 

prediction results of ML models are more accurate and efficient than traditional physics-based 

models. Additionally, CNN model is also used to predict novel types of microstructures beyond 

training set. 
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Figure 1. Workflow of machine learning models for predicting macroscopic properties of materials using 

microstructure information, the blue part above represents the steps for ANN, and the gray part below 

represents the steps for CNN. 

2 MATERIAL AND DATA PREPARATION 

In this section, microstructural information of a nickel-based superalloy specimen with γ′ 

precipitates are prepared for ANN model training. The raw SEM images and some processing 

parameters are transformed to numerical values by feature engineering and weight ranking[22]. 

The unit representative image generated by numerical simulation and the ETC value of thermal 

insulation composites calculated by mesoscopic simulation are used as CNN training data[23].  

2.1 Microstructural image preparation 

The research of correlating between hardness and microstructural data is based on an nickel-

based superalloy specimen. Powder compacted specimen are prepared using the gradient 

cooling method, and hundreds of SEM images are generated to study different microstructures 

of γ′ precipitates. In Figure 2(a), some SEM images showcasing γ′ precipitate distribution and 

morphology variations linked to cooling rate, and the Vicker hardness measurement positions 

is corresponding to the microstructure observation position. The average precipitate sizes and 

their volume fraction gradually increase from the specimen bottom to the top part. The origin 

training data for ANN model has 483 SEM images and value of Vicker hardness at 

corresponding position. 

For alloy materials, it is relatively convenient to conduct high-throughput hardness 

measurement experiments, but the cost of thermal conductivity measurements when studying 

insulating materials is still relatively high. Therefore, the research of mapping microstructure 

and macroscopic property ETC of thermal insulation composites is using the representative 

volume element (RVE) approach generated by numerical methods[24, 25], as shown in Figure 

2(b). These RVEs are close to the real fibrous or particulate microstructures of thermal 

insulation composite materials. Then a two-dimensional nine-speed D2Q9 Lattice Boltzmann 

method (LBM)[26] mesoscopic simulation is used to calculate ETCs of RVEs. For ETC 

prediction case, one sample includes one image RVE as input, and two ETCs of x and y direction 

as outputs. The training set for CNN model has 4000 samples and test set has 400 samples. 
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(a) (b) 

Figure 2. (a) SEM observations showing the gradient distribution of γ′ precipitates from the superalloy 

specimen; (b) Representative images of reconstructed microstructure of thermal insulation composites. 

2.2 Feature engineering: extracting microstructural descriptors 

As mentioned in the introduction, the CNN model uses images one by one as input, while 

the ANN model needs to extract feature values from the pictures as inputs.  

Before extracting microstructural features, the SEM images of alloy specimen are binarized 

and segmented. And the γ′ precipitates are differentiated from the matrix by grayscales of image. 

Then 24 descriptors of microstructural are extracted by an image processing software. These 

descriptors are divided into two categories: dispersion state and geometry of γ′ precipitates. 

Another category of descriptor is alloy specimen processing parameter -- cooling rate. Totally, 

3 categories including 25 descriptors are as ANN inputs, the details are shown in Table 1.  

Table 1: The definition of microstructural descriptors and cooling rate of γ′ precipitates. 

Number Descriptor Definition Type 

1 VF Volume fraction 

Dispersion 

2 X X Center (Pxl) 

3 Y Y Center (Pxl) 

4 N Number of γ' precipitation cluster 

5 D Distance to scene border (Pxl) 

6 SDa Standard deviation of area 

Geometry 

7 A Area (Pxl) 

8 SI Shape index, 𝑆𝐼 = 𝑃 4√𝐴⁄  

9 δcmp Compactness [32] 

10 𝐿𝑏 Border length 

11 𝜃𝑚 
Main direction, 𝜃𝑚 = arctan(𝑙𝑚𝑙𝑦 𝑙𝑚𝑙𝑥⁄ ), 

𝑙𝑚𝑙𝑦 𝑙𝑚𝑙𝑥⁄ means the inclination of main line 

12 δrnd Roundness, 𝛿𝑟𝑛𝑑 = 𝑟𝑟𝑙𝑒 𝑟𝑒⁄  

13 δrecf Rectangular Fit [33] 

14 δden Density, 𝛿𝑑𝑒𝑛 =  𝐴 𝑟𝑒⁄  

15 δellf Elliptic Fit [34] 

16 δasp Length/Width 

17 𝐿𝑤 Width (Pxl) 

18 𝐿𝑙 Length (Pxl) 

19 δasy Asymmetry 

20 rrle Radius of largest enclosed ellipse [35] 
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21 𝑟𝑒  Equivalent radius, 𝑟𝑒 = √𝐴 𝜋⁄  

22 Lml Length of main line (Pxl) 

23 P Perimeter 

24 nafr(Ai) 

Frequency range of area (𝐴𝑖~ 𝐴𝑖+250) (Pxl), 

Ai means the amount of pixels and 250 means 

the areas increment of 250 pixels of γ' 

precipitation 

25 dT/dt Cooling rate(℃/min) Processing parameter 

 

3 MACHINE LEARNING MODELS 

The training of ANN model consists of two parallel processes: a shallow neural network 

(SNN) training for ranking features, and a deep neural network (DNN) training for predicting 

the hardness of alloys. The training process of CNN is general. After the CNN model training 

is completed, real experimental data is used for CNN model validation. 

3.1 Microstructural feature weight ranking by a SNN model and DNN training 

Because of manual feature engineering, the input data might be excessive due to the reliance 

of various microstructural descriptors on each other. In order to reduce redundant information, 

save the training cost of DNN model, and help understanding the importance of each parameter 

on hardness, a SNN model of single hidden layer, as shown in Figure 3(a), is built to calculate 

the ranking of different descriptors.  

 

  

(a) (b) 

 

(c) 
Figure 3. (a) SNN for feature weight ranking, (b) DNN model, (c) three training processes for feature weight 

ranking. 

The training process is performed three times to obtain a more accurate feature weight 

ranking, which is ultimately used for training the DNN. The data set should reflect the hardness-

related characteristics of the alloy as much as possible within the limited features. 

The diagram of three training process is shown in Figure 3(c). (1) In the 1st training, 23 
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descriptors (number 1 to 23 in Table 1) as input data are used to train the first SNN model. As 

a result, top 10 types of descriptors can be picked out by the ranking of weighting factors in the 

first SNN model. (2) In the 2nd training, a new-added parameter referring to area distribution 

nafr(Ai) together with the above-chosen top 10 parameters consisted input data set to investigate 

the effect of areas of γ′ precipitates on hardness. (3) In the 3rd training, similarly, cooling rate 

is added in the top 10 parameters selected from the second training set. Cooling rate is regarded 

as a remedy of γ′ precipitates internal variable, since it is widely believed to primarily control 

γ′ precipitates. Since tertiary γ′ precipitates are difficult to be observed except using high-

resolution TEM tools, the nano-sized γ′ precipitates are not observed in SEM images and their 

contributions on the hardness have been missed.  

Corresponding to the data sets selected from the three trainings of SNN, three data sets are 

used to train DNN, and three DNN models are obtained. The DNN is consisted of an input layer, 

8 hidden layers and one output layer. The architecture of DNN is shown in Figure 3(b). 

3.2 Training CNN model and validation with experimental data 

Unlike the ANN model used above, CNN has two distinct types of hidden layers: 

convolutional layers and pooling layers. The CNN model is consisted of one input layer, 4 

convolution layers, 4 average pooling layers, 2 full connect layers and one output layer with 2 

outputs, as shown in Figure 4(a).  

The comparisons of test set results between CNN and LBM are shown in Figure 4(c). The 

regression coefficient R2 of ETCs in x and y direction, as shown in Eq.(1), are very close to 1, 

which means that this CNN model establishes an accurate relationship between ETCs and the 

microstructure of RVEs. 
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(b) (c)  

Figure 4. (a) CNN model architecture, (b) comparisons between CNN and LBM predictions of test set, (c) 

photo and SEM of PDMS composites, comparisons between LBM, CNN predictions and experiment results of 

the composites, error bars represent the standard deviation of three parallel tests. 

 

The CNN model is validated by real experimental data. The experimental data is generated 

involving composite materials with specifically customized volume fractions of inclusions. The 

PDMS(Polydimethylsiloxane) matrix composite is fabricated and tested. The photos and SEM 

of some material samples are shown in the Figure 4(a). According to SEM and raw material 

properties, RVEs and corresponding ETCs are generated. The results comparisons between real 

experimental data, CNN and LBM predictions are shown in Figure 4(b). The prediction results 

of the CNN model are very consistent with the LBM, and the R2 value is above 0.99. The 

predictions of LBM and CNN model are both close to that of real experiment, which proves 

that the data generated by LBM is reliable, and the CNN model can well capture the results of 

LBM. 

4 RESULTS AND DISCUSSIONS 

4.1 Comparison of three ANN models 

For ANN models predicting hardness of the alloy specimen, the prediction results of test set 

by 3 SNN and 3 DNN models are shown in Figure 5. With the training of three different 

microstructure descriptors data sets, the R2 of both SNN and DNN models gradually increased. 

The 1st SNN and DNN have lower prediction accuracy. This might because they are training 

by the 23 microstructural descriptors, the training data has too much interference information 

or the material properties are not fully described. 

In the 2nd training, the R2 of SNN and DNN both improved slightly. This might be ascribed 

to the role of size distribution rather than the conventional wisdom that have used average 

precipitate size as the controlling parameter to calculate shearing stress. It is worth mentioning 

that since the 𝑛𝑎𝑓𝑟(10) parameter is added to the descriptors set, 𝑛𝑎𝑓𝑟(10) become the third 

most important parameter in the 2nd feature ranking, illustrating its importance to hardness. 

The improvement of R² is believed to be closely to the consideration of area distribution 

descriptor. 

In the 3rd training study, cooling rate is added in to descriptors set. It is the most important 

parameter that controlling hardness according to feature ranking. And the highest R2 values of 

3nd SNN and DNN also demonstrated that prediction accuracy is improved by introducing the 
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parameter of cooling rate. 

 

  
(a)  (b) 

Figure 5. Hardness results comparison between prediction and experimental measurements, the straight lines 

represent the linear fit of each model prediction, 3 training results are represented by the blue, red and green 

dots and linear fit curves respectively, (a) prediction by SNN, (b) prediction by DNN. 

4.2 Comparation between ML models and analytical models 

The ANN and CNN are also employed to predict samples out of training set. And the 

comparation between ML model and some traditional models are as shown in Figure 6. It can 

be seen that the accuracy of ML models is higher than traditional analytical models. This 

indicates that ML models have predictive capabilities exceed physics-based models. ML 

models can receive more features as inputs and automatically develop reasoning abilities that 

are different from human logic. On the contrary, the understanding of the mapping between 

microstructure and macroscopic properties in physics-based models is not comprehensive 

enough. For example, the Jagjiwanram model[27] cannot take the aspect ratio of fibers of 

consideration, and the H-S model[28] cannot consider the scale effect of particles. 

 

   
(a)  (b) (c) 

Figure 6. Error plots of ML models prediction and traditional analytical models, (a) hardness results of DNN, 

SNN, Mao et al.[29], Deng et al.[30], the experimental measurement is regarded as ground truth, (b) ETCs 

results of RVEs of fibrous material with parallel fibers by CNN, Xie’s model[25], Jagjiwanram model[27], (c) 

ETCs results of RVE of particulate material with aligned elliptical inclusions by CNN and H-S model[28]. (The 

LBM result is regarded as ground truth for (b) and (c)) 
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4.3 Prediction for novel microstructures 

To further explore the potential of the CNN model, two sets of novel RVEs are generated: 

50 hybrid RVEs of fibrous and particulate composites, 10 SEM RVEs from real materials 

images[31-33]. The hybrid RVE is created by performing matrix addition operations on two 

models represented in matrix form from QSGS and RGGM methods, respectively. The SEM 

RVEs are binarized and resized for CNN prediction. Then the ETCs are predicted by both LBM 

and CNN. Figure 7 shows the comparison between CNN and LBM predictions. Obviously, the 

prediction accuracy of CNN for new samples is still very high, with R2 above 0.99. 

Although the CNN is trained using two types of microstructure RVEs, it itself does not 

differentiate the particulate or fibrous types of microstructures. That is to say, CNN can predict 

the ETC of any (artificially defined) type of microstructure.  

CNN’s ability to understand images is implicit, and the weights, bias terms and feature maps 

in the model do not have clear physical meanings, some feature maps are shown in the Figure 

7(c). The distinct mapping utilized in this process, as opposed to artificially defined physical 

models, enables the prediction of macroscopic properties corresponding to any microstructure 

type. 

 

  
(a) (b) 

 
(c) 

Figure 7. (a) Results of 50 hybrid RVEs by CNN and LBM, (b) results of 10 SEM RVEs, (c) visualization of  

CNN feature map 

 

5 CONCLUSIONS 

This paper presents two kinds of machine learning models to predict macroscopic 

properties of heterogeneous material by microstructural data. Although the training data and 

processes of the models are slightly different, both ANN and CNN model’s prediction are more 

accurate and faster than traditional physical models. The following conclusions are drawn: 
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(1) The ANN model can rank input features by importance. Not only can it eliminate 

redundant material descriptors (for models that predict the hardness of such alloys), but it can 

also show the influence of a certain material parameter on the hardness, which is useful for 

guiding material design process.  

(2) The CNN model has advantage of without manual feature engineering, which makes 

its use more convenient. At the same time, CNN does not “identify” the type of microstructure, 

but only realizes the perception of microstructure through convolution and pooling layers. So, 

with sufficient training data, the artificial microstructure classification (particles, fibres, various 

shapes, etc.) has less impact on the predictive power of the CNN model. 

(3) Based on enough and reliable microstructural and macroscopic data for training, ML 

models can predict macroscopic properties, such as Young’s modulus, hardness, etc., that can 

be correlated to the material's microstructure. This underscores the promising role of machine 

learning in propelling advancements in materials science and accelerating the creation of 

materials tailored to meet specific property requirements. 
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