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Summary. The integration of data and simulations has become increasingly important in
the design of physical systems. By developing a virtual replica that targets specific functions,
a digital twin helps us control the key responses of the system and allows better insight into
its functionality. Our application of interest consists of thermal drills or cryobots that access
remote ice sheets and retrieve geophysical data, e.g., in Antarctica. Future exploration mis-
sions, however, will target the icy moons of our solar system, which requires extrapolating the
performance of the cryobots to extreme environments and underlines the need for a virtual
testbed, i.e., the Cryotwin. Physics-based forward models are a fundamental component of the
Cryotwin. In particular, a hierarchy of computational models plays a key role in assessing the
cryobot’s efficiency, trajectory, and optimized sensor positioning. The numerical simulations
are then integrated with a data hub to access environmental and measurement data. However,
computing times present a difficult challenge when performing sensitivity analysis or real-time
predictions during operations. Alternatively, we can employ surrogate models, e.g., Gaussian
process emulation, to replace high-fidelity simulations. In this contribution, we present the Cry-
otwin structure and discuss its potential applications as a digital twin for cryobots, specifically
focusing on efficiency prediction. Additionally, we analyze the effect of temperature-dependent
ice properties on energy losses. By training a Gaussian emulator, we demonstrate a considerable
reduction in compute time which opens opportunities for Cryotwin in the model-based design
of future cryobots, mission preparation, and real-time operations.

1 INTRODUCTION

Thermal ice drilling gained popularity in the 1960s due to being less bulky and cleaner
compared to mechanical drilling. As of today, it is still the favorite way of digging into the ice
whenever the footprint needs to be minimized or autonomous operation is sought [2, 10]. The
water beyond these ice layers has been preserved for a long time and constitutes a memory of
past environmental conditions. Analyzing this water can help us better understand the biological
aspects of the ecosystem that existed in that period. The observations from the Galileo probe
in 1997 [2], which indicate the presence of water under the ice layer of Jupiter’s moon Europa,
give us the vision for a mission to extract the water beyond the ice layer in Europa to assess
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Figure 1: Sketch of the proposed Cryotwin structure. On the right, the physical melting process is
shown. Data is collected and sent to the control system (brown). The Cryotwin (blue) processes the data
and leverages computational models (black) for decision-making.

its potential habitability. To come up with a concept and plan for such a mission is extremely
complex due to the unknown environmental conditions. Several lab-scale experiments performed
in the 2000s examined low atmospheric pressure, heterogeneous ice, cryogenic ice, etc., but it is
not established how well they will translate to an actual field test on Europa [10]. Given the
uncertainties involved, it is of utmost importance to have a proper sensitivity analysis of the
involved parameters in any model-based development of exploration technology that involves,
e.g., efficiency modeling. Doing this in terms of lab experiments alone is not feasible. Also,
autonomy becomes a necessary element of cryobots being developed for such extraterrestrial
applications and demands real-time calculation for operation management. The digital twin
concept leverages both physics and data-driven approaches and gives us control over the targeted
behavior of the system based on two-way communication. This offers opportunities for model-
based design and decision-making [11]. This motivates us to come up with a predictive digital
twin – the Cryotwin – that would give us the possibility to conduct these experiments virtually.

The Cryotwin constitutes a virtualization of the cryobot that provides relevant simulation
models and data along with digital infrastructure to efficiently interface its components. The
theoretical Cryotwin concept, Fig. 1, can be realized on a single computer, or distributed hard-
ware, that communicates with the cryobot. A local instance of an external datahub, similar to
[7], is set up on the hosting computer and stores measurement data either from previous expe-
ditions or from the cryobot, particularly for real-time assessments. The Cryotwin is interfaced
with the datahub to use data for simulations and convey decisions via the hosting computer.
Inside the Cryotwin three application areas are currently being worked on. Given a particular
environmental condition, predict the trajectory and efficiency of the cryobot [12] and also use
the Cryotwin to optimize sensor placement. Each of these application suites includes high and
low-fidelity models identified as semi-analytical [3], numerical [9], and surrogate. Data assim-
ilation strategies, such as using Kalman gain [13], are being worked on to improve calculated
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states and predictions. For instance, surface temperature measurements in the cryobot can be
used to correct the computed temperature and in turn, correct the calculated efficiency.

A description of the complete Cryotwin is beyond the scope of this contribution. Here, we
will restrict ourselves to a description of Cryotwin’s efficiency modeling suite. We present a
semi-analytical model, extending the work in [3, 8], to predict the efficiency of the cryobot for
applied heat and environment conditions, at a particular calculated probe velocity or melting
velocity. While the model used here for efficiency prediction falls in the class of lower-fidelity
models, it still offers similar in-type interfaces to alternative higher-fidelity models that will be
coupled to the Cryotwin infrastructure as a next step [9]. Following that, we investigate the
impact of state-dependent properties of ice on heat loss, which requires the numerical solution of
nonlinear equations. This increases computing time and is unsuitable for real-time predictions or
sensitivity analysis. Finally, we present a Gaussian emulator approach to reduce the computing
time and discuss its future applications.

2 EFFICIENCY EVALUATION

2.1 Semi-analytical mathematical model

Mapping all the heat components that are involved with the domain is important for effi-
ciency modeling. Fig. 2 shows the domain considered in this work. It includes the cylindrical
axisymmetric melting head (the front part of the cryobot), the micro-scale melt film at the front,
the melt channel at the side, and the ice around it. Fig. 3 shows the cross-section of the domain
along with the heat components and geometrical parameters. Note that the applied heat Qb,
the melting heat Qm, the lateral conductive heat loss to the ice Qlc, and the convective heat
loss via the melt channel Qcc are on global thermal equilibrium, i.e., Qb = Qm +Qlc +Qcc. The
other three components are internal to the system and implicitly satisfy equilibrium. Different
process models based on the specific domain have been suggested in the past to predict the
cryobot efficiency. The first efficiency model was developed by Aamot [1] and it involves the
melting head and the surrounding ice and considers only Qlc. Then, Schüller et al. analyzed the
melt film and the effect of the gravitational force on the system [3]. The last approach, however,
accounts for convective heat losses Qc from the melt film only. In [8], the melt channel is consid-
ered explicitly, which allows to model both Qlc and Qcc. This time, however, the gravitational
force is not considered, so different environmental conditions cannot be studied.

In this work, we consider the complete domain and both Qlc and Qcc, along with the effect
of gravitational acceleration. We distinguish between two efficiency parameters. The first one
is the close-contact melting (CCM) efficiency ϵccm, as introduced in [3]. This term contains the
effect of gravitational acceleration, but it is modified due to the presence of the melting channel.
The second one is the total efficiency ϵtot. By definition, the total efficiency represents the
fraction of the input power that is translated into forward motion, whereas the CCM efficiency
captures how well the available heat in the melting head, hence after conductive losses Ql, is
translated into forward motion. Mathematically they are defined as

ϵccm =
Qm

Qf
and ϵtot =

Qm

Qb
. (1)

We subdivide our fluid domain into a horizontal channel representing the melt film and
a vertical channel representing the melt channel. As the channels are thin, we simplify the
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Figure 2: Sketch of the domain with the cryobot, melt film, and channel, along with the surrounding
ice. The front part of the cryobot, the so-called melting head, supplies heat to the system.
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Figure 3: Sketch of the cross-section of the melting domain with the heat components and parameters
such as the radius of the cryobot and channel as well as the cryobot length and melting film thickness.

governing equations through lubrication theory [3]. We fix the cylindrical coordinate system at
the center of the melting head surface, as shown in Fig. 3, such that the cryobot is stationary,
whereas the ice is moving towards it with the melting velocity −W . Also, note that we consider
a near-surface ice environment with constant ambient ice temperature. Following [1, 8], we
consider only axial heating at the front and only radial heating at the lateral part of the domain.
The mass, momentum, and energy conservation equations for the melt film are given by

1

r

∂(ru)

∂r
+

∂w

∂z
= 0,

µ
∂2u

∂z2
=

dp

dr
,

u
∂T

∂r
+ w

∂T

∂z
= αl

∂2T

∂z2
,

(2)

where µ is the dynamic viscosity and αl is the thermal diffusivity of water. We consider boundary
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conditions for the flow and temperature field at the surface of the melting head, i.e. z = 0,

u(r, 0) = w(r, 0) = 0, and
∂T

∂z

∣∣∣∣
z=0

= −
Qf

πR2kl
, (3)

and at the phase-change interface i.e. z = δ,

u(r, δ) = 0, w(r, δ) = −ρs
ρl
W and T (r, δ) = Tm, (4)

where δ represents the melt film thickness, kl is the thermal conductivity of water, ρs and ρl
denote the densities of ice and water, and Tm is the melting temperature. To close the problem,
the Stefan condition is considered for the energy balance at the phase-change interface, that is

∂T

∂z

∣∣∣∣
z=δ

= −ρs
kl
W [hm + cp,s(Tm − Ts)], (5)

where hm is the latent heat of melting, cp,s is the heat capacity of ice and Ts is the ambient ice
temperature. Using Eqs. (3) and (4) and integrating the mass and momentum terms in Eq. (2)
across the melt film thickness, we get the pressure gradient and horizontal velocity

dp

dr
= −

6µρs
ρl
Wr

δ3
and u = −

3ρs
ρl
Wrz(z − δ)

δ3
. (6)

Similarly, integrating the energy equation by considering a parabolic temperature profile that
satisfies the boundary conditions and Eq. (6), we obtain a relation for the melt film thickness

δ =
20αlρl

(
Qf

R2 − Qm

R2
o

)
Wρs

(
3
Qf

R2 + 7Qm

R2
o

) . (7)

This relation allows us to infer the melt film thickness based on the melting velocity W and
heat transferred from the melting head to the melt film Qf . Note that differently from [3], this
derivation includes the vertical melt channel of radius Ro. The melting heat Qm is calculated
from the Stefan condition

Qm = πR2
oρsW [hm + cp,s(Tm − Ts)]. (8)

To derive another expression for δ, we first consider the force balance in the melt film

F (g) =

∫ R

0

∫ 2π

0
(p− po)r dϕ dr, (9)

where po is the pressure at region B in Fig. 3. After integrating the pressure gradient in Eq. (6)
and combining the pressure term with Eq. (9), we obtain another expression for melting film
thickness

5



Dipankul Bhattacharya, Leonardo Boledi and Julia Kowalski

δ =

(
1.5µπWR4 ρs

ρl

F (g)− πR2(p1 − po)

)1/3

, (10)

where p1 denotes the pressure at region A in Fig. 3. Now, equating Eqs. (7) and (10), we obtain
the CCM efficiency

ϵccm =
Qm

Qf
=

(
Ro2

R2

) 1− 3
20αl

(
WRρs

ρl

)4/3 (
1.5πµ
F ∗(g)

)1/3

1 + 7
20αl

(
WRρs

ρl

)4/3 (
1.5πµ
F ∗(g)

)1/3
. (11)

Here, the net force F ∗ is given by F ∗(g) = F (g)− πR2(p1 − po). To compute ϵccm, we need to
know W and p1. The latter can be calculated by solving the flow field in the vertical channel,
i.e., the melt channel. The momentum equation for the melt channel is given by

dp

dz
=

µ

r

∂

∂r

(
r
∂w

∂r

)
+ ρlg, (12)

where g is the gravitational acceleration. We integrate Eq. (12) using the boundary conditions
w(R, z) = 0 and w(Ro, z) = −W . Thus, we obtain the velocity in the melt channel

w = (R2 − r2)X + [−W + (R2
o −R2)X]

ln
(
r
R

)
ln
(
Ro
R

) . (13)

The variable X is a function of p1 and is given by

X = − 1

4µ

(
∂p

∂z
− ρLg

)
. (14)

Equating the mass flow rate of melting ice and water flowing through the melt channel

πR2
o(−W )ρS = 2πρL

∫ Ro

R
wr dr, (15)

we can finally calculate p1 as a function of the unknown W . Now, to calculate W we use the
global thermal equilibrium

Qb = Qm +Qlc +Qcc. (16)

Qm is given by Eq. (8). Qlc and Qcc are given as
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Qlc = nσd[R2
oW (Tm − Ts)],

Qcc =

(
1 + 0.24021

Ro −R

R

)
Ro −R

2αl

(
πR2

oρsW

ρl

)(
ndLd−1

(WR2
o)

d
R2

oW (Tm − Ts)

)
,

(17)

where d = 0.726 and n = 932( 2Tm
Tm+Ts

) are fit constants, and σ = L
WR2

o
∈ [5× 104, 108]. We refer

to [2, 4] for further details on the derivation of these equations.
To summarize the calculation process, for an applied heat Qb and melting channel radius Ro,

we solve the non-linear Eq. (16) to obtain the probe velocity W . Then, we can calculate Qm,
Qlc and Qcc to determine the total efficiency ϵtot. Using Eq. (15) and the velocity W , we obtain
p1 that is used to calculate ϵccm with Eq. (11). Note that ϵccm cannot be less than ϵtot. From
Fig. 3 we see that the applied heat Qb branches into heat going to the front part of the melting
head Qf and heat that is lost to the melt channel Ql. Now as per Eq. (1), ϵccm < ϵtot would
imply Qf > Qb, which would mean Ql is negative, i.e., the melt channel is giving energy to the
melting head. This is physically impossible within our application.

2.2 Variable material properties modeled by the non-linear heat equation

In the previous section, we used the formulation by Ulamec et al. [2], which considers ice
properties at a representative ice temperature, i.e., 0.5(Tm + Ts). Considering near-surface ice
with constant Ts, the temperature of ice close to the cryobot varies spatially, which influences,
e.g., the thermal conductivity ks(T ) [2]. To allow for spatially-varying material parameters, we
have to go beyond the convenient semi-analytical model and leverage numerical tools like the
finite element method (FEM) to calculate Qlc. As we consider the steady state and also the
melting head in a static frame of reference, the 2D heat equation in the ice at the lateral part
of the cylindrical cryobot is given as

1

r

∂

∂r

(
−ks(T )r

∂T

∂r

)
+ cs(T )ρs(T )W

∂T

∂z
= 0. (18)

This non-linear 2D equation can be converted into a non-linear transient 1D equation, by intro-
ducing time t = z

W , which yields

1

r

∂

∂r

(
−ks(T )r

∂T

∂r

)
+ cs(T )ρs(T )

∂T

∂t
= 0. (19)

We solve Eq. (19) for the end time given by L
W and obtain the heat flux qlc along the length of

the ice surface. Then, we integrate it over the cylindrical curve surface to get the total heat loss

Qlc = 2πRo

∫ L

0
qlc(l) dl. (20)

7



Dipankul Bhattacharya, Leonardo Boledi and Julia Kowalski

2.3 Surrogate based on Gaussian emulation as real-time enabler

Experiments and numerical solution strategies are not suitable for real-time prediction or
sensitivity analysis of efficiency values. Surrogates for numerical models can be used to reduce
the computational time. Within this work, we focus on Gaussian process emulation, namely, a
stochastic algorithm that uses multi-variate Gaussian functions to represent model output.

The mathematical description of the algorithm is beyond the scope of this work, the reader is
referred to [5, 6] for further details on Gaussian processes. For our emulator, we use a first-order
polynomial trend and the Matern-5-2 correlation function. For the hyperparameters, we use a
cross-validation estimator and a hybrid genetic algorithm for the optimization process.

Evaluating the Cryotwin’s efficiency model, at present, involves providing the geometrical
parameters of the cryobot (see Fig. 3), mass, applied heat Qb and selecting planetary conditions.
The Gaussian emulator is trained with the FEM solutions for updated conditions at regular
intervals and is recommended for fast evaluation of Qlc. The Cryotwin outputs the probe or
melting velocity, the heat components, and the efficiency values for specified input conditions.

3 RESULTS AND DISCUSSION

We use the Cryotwin to assess the performance of a cryobot of mass 30 kg, Length L = 2.5m,
Radius R = 0.06m with melting channel thickness 0.003m that makes Ro = 0.063m, on Earth
and Europa. We first obtain the heat components and efficiencies, as described in Section 2.1
and given in Eqs. (16) and (1). Then, we assess the effect of spatially varying temperature
on heat loss using the Cryotwin FEM solver as described in Section 2.2. Further, we use the
Cryotwin Gaussian emulator to build a surrogate for the numerical solver following Section 2.3.

3.1 Energy loss and efficiency

Fig. 4 shows the calculated heat components on Earth and Europa. The applied heat Qb is on
the x-axis, and the fraction of heat components to Qb is on the y-axis. Additionally, we show the
probe velocity W on the right y-axis, which is solved using the non-linear Eq. (16). From both
plots, we see that the conductive heat loss Qlc is substantially higher than the convective heat
loss Qcc. At lower Qb, the maximum amount of heat is getting lost rather than being used for
melting. As we increase Qb, the fraction of melting heat Qm increases causing an increase in W
and a reduction in the Qlc fraction. However, the Qcc fraction increases, because as the velocity
W increases, the flow through the melt channel increases. This is to remove the increasing
amount of water produced by the faster melting process through the fixed-width channel. When
we compare the plots between Earth and Europa, we observe that a much higher amount of
Qb is required to attain the same W . Also, the fraction of heat being lost (both Qlc and Qcc)
is higher on Europa than on Earth. This can be attributed to the much colder ice found on
Europa (100K) compared to Earth (220K).

Fig. 5 shows the total efficiency ϵtot and the CCM efficiency ϵccm for both Earth and Europa.
On the x-axis, we have Qb, on the y-axis we have the efficiencies, and on the right y-axis, we have
W . Both plots show that ϵtot increases as we increase Qb. This is directly related to the increase
of Qm, as evident in Fig. 4. Also, we see a decrease in ϵccm as we increase Qb. This is because as
Qb increases so does W and the amount of water generated from melting ice. A higher pressure
is required to remove the increasing amount of water through the fixed-size melting channel.
This increases the total pressure in the melting film and reduces the net force F ∗(g) acting
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(a) Earth (b) Europa

Figure 4: Fraction of heat components Qcc, Qlc and Qm to applied heat Qb for Earth (a) and Europa
(b).

downwards. And finally, since the ϵccm is directly proportional to F ∗(g), as shown in Eq. (11),
we see it decreasing. Based on the fact that ϵccm < 1 and ϵccm > ϵtot, as explained previously,
we obtain a theoretical limit on the achievable W , as shown in Fig. 5. Thus, given a particular
environmental condition, i.e., Earth or Europa, and a particular melting channel configuration,
we can achieve a certain possible range of W for a corresponding Qb range. When we compare
the plots for Earth and Europa, we see a direct translation of Qm plots from Fig. 4 into the ϵtot
plots. The presence of much colder ice explains the observed lower ϵtot in the case of Europa.
We also observe a range with lower W values in the case of Europa (0.6-4.2m/hr) against Earth
(1-4.4m/hr). This is explained by the presence of lower gravitational acceleration on Europa
(1.3m/s2) compared to Earth (9.8m/s2), which reduces the net force F ∗(g) to begin with. From
thermal equilibrium, see Fig. 4, any value of W is possible when subjected to corresponding Qb.
However, when we overlap this with force balance and bring in the concept of ϵccm, we get a
physically possible range of W . Also, it is quite counter-intuitive how the velocity increases
within this range without an expected asymptotic behavior towards the limits. This is because
we consider a fixed melting channel radius. The Qb beyond this range would presumably change
the channel configuration, which can be captured via high-fidelity numerical simulations and is
part of our future research.

3.2 Effect of temperature-dependent ice properties

As witnessed in Fig. 4, Qlc forms a major part of Qb. Fig. 6 shows Qlc for different calculated
W . We call the analytical solution by Aamot [1], which considers constant ice properties at
melting temperature Tm, as sol. 1, and the analytical solution by Ulamec [2], given by Eq. (17),
as sol. 2. Next, we have the FEM 1D linear solution, by solving Eq. (19) but with constant ice
properties at Tm. We call this sol. 3. And lastly, the FEM 1D non-linear solution, obtained
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(a) Earth (b) Europa

Figure 5: Total and CCM efficiency along with velocity W at applied heat Qb for Earth (a) and Europa
(b).

by solving Eq. (19), is referred to as sol. 4. From plots for both Earth and Europa, we can see
that sols. 1 and 3 underestimate Qlc, which underlines the effect of considering temperature-
dependent ice properties. This is even more prominent in the case of Europa, where we have
much colder ice. Also, sol. 2 shows a good resemblance with sol 4 at lower W values and
comparatively warmer ice, like on Earth. However for colder ice, like on Europa, we can already
see a deviation of sol. 2 from 4 even at lowerW . At higherW values we notice an underestimation
of Qlc by sol. 2 for both Earth and Europa, being significant for the case of colder ice on Europa.
Empirical data shows underestimation up to 50% by sol. 1 in the case of colder ice as mentioned
in [8]. A similar observation is made when we compare sols. 1 and 4 for Europa in Fig. 6.

3.3 Gaussian prediction

As we showed in the previous section, considering temperature-dependent ice properties is
paramount for calculating Qlc and involves solving the non-linear heat equation. For instance,
on a Lenovo Thinkpad i7 Laptop with 16 GB RAM and serial implementation, the time required
to obtain the analytical solution for Qlc is 0.5 s, the linear and non-linear 1D FEM solution is
0.7 s and 89 s, respectively. This adds a lot of overhead when planning for sensitivity analysis
or real-time prediction of Qlc. We set up the Gaussian process emulator by training it with 100
points of W and Ts as inputs and corresponding Qlc as the output, being calculated using the
1D Non-Linear Eq. (19). We also add a noise of 0.1 kW in the output training data to check
the robustness of the emulator. Fig. 7 shows the prediction of the emulator on 20 completely
different points (other than training points) along with the 1D non-linear FEM solution at
those same points. We observe a good mean prediction by the emulator along with a maximum
standard deviation (uncertainty) of 0.42 kW and an average of 0.14 kW. These values can be
further reduced by using the active learning strategy. Further, Table 1 shows the time associated
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(a) Earth (b) Europa

Figure 6: Effect of temperature-dependent ice properties on lateral conductive heat loss Qlc at a constant
ambient temperature Ts for Earth (220K) and Europa (100K).

with each part of the Gaussian emulator. By using the emulator, we could reduce the computing
time, i.e., calculate Qlc and at the same time maintain good prediction accuracy.

Table 1: Time components (in seconds) involved during the setup of the Gaussian emulator.

Training Data generation Training Ground Truth Data generation Prediction

89× 100 2.2 89× 20 0.65

4 CONCLUSIONS

In this work, we presented the Cryotwin concept and its efficiency modeling suite. We derived
a semi-analytical efficiency model, extending existing results, that allows us to evaluate the effect
of the melt channel on the cryobot’s performance for different environmental conditions. The
introduction of a fixed width melt channel not only brings in additional components of heat loss
but, when combined with ϵccm, establishes a theoretical limit on dynamics of the cryobot, i.e., its
velocity W . The Cryotwin can also consider spatial variation of ice properties via its numerical
solver, which plays a significant role in quantifying Qlc, especially in colder ice environments like
Europa. Runtime challenges with the numerical solver are tackled with the Cryotwin Gaussian
emulator that provides an accurate and fast prediction of Qlc. The initial analysis presented
supports Cryotwin’s suitability in model-based design of future cryobots, mission preparation,
and real-time operations and therefore will be extended further to enhance its capabilities.
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Figure 7: Prediction of lateral conductive heat loss Qlc at different ambient temperature Ts (a) and
probe velocity W (b).
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