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ABSTRACT  

Recently, the increasing severity of climate change attributable to global warming has emphasized the imperative of 

carbon absorption to mitigate greenhouse gas emissions. The use of the carbon sink based on the carbon absorption and 

storage functions of forests is suggested as an effective alternative for domestic greenhouse gas reduction. Additionally, 

agricultural land cover comprises approximately 38% of the Earth's surface, underscoring the importance of 

comprehensively understanding the carbon cycle within not only forests but also agricultural landscapes. This significance 

arises from the fact that agricultural land locally amplifies seasonal variations in carbon dioxide by approximately 25% 

compared to vegetated areas. Consequently, a comprehensive understanding of both forest and agricultural land carbon 

cycles is imperative, necessitating quantitative analysis of carbon uptake in agricultural settings. Thus, this study aims to 

construct a machine learning-based model for estimating the net ecosystem exchange (NEE) of rice paddies in South 

Korea using ground flux data, meteorological variables, and satellite images. Through quantitative assessment, the NEE 

was determined, with a mean absolute error of 1.387, root mean square error of 2.203, and correlation coefficient of 0.872. 

Notably, observed NEE values demonstrating extremes in magnitude were associated with calculation errors, reflecting 

tendencies of both underestimation and overestimation. This phenomenon is likely attributed to the study's reliance on a 

limited dataset and the inherent challenges of training models across a broad spectrum of observations. To enhance 

calculation accuracy, future endeavors should focus on accumulating a more extensive repository of NEE flux 

observations and leveraging high-resolution satellite imagery and meteorological datasets for refining machine learning-

based models. 
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1. Introduction 

In recent years, the increasing severity of climate 

change attributable to global warming has emphasized 

the imperative of carbon absorption to mitigate 

greenhouse gas emissions. The use of the carbon sink 

based on the carbon absorption and storage functions of 

forests is suggested as an effective alternative for 

domestic greenhouse gas reduction. Additionally, 

agricultural land cover comprises approximately 38% of 

the Earth's surface, underscoring the importance of 

comprehensively understanding the carbon cycle within 

not only forests but also agricultural landscapes. This 

significance arises from the fact that agricultural land 

locally amplifies seasonal variations in carbon dioxide by 

approximately 25% compared to vegetated areas (Satio 

et. 2005; Gray et al. 2014; Zeng et al. 2014).  

Consequently, a comprehensive understanding of both 

forest and agricultural land carbon cycles is imperative, 

necessitating quantitative analysis of carbon uptake in 

agricultural settings. Thus, this study aims to construct a 

machine learning-based model for estimating the net 

ecosystem exchange (NEE) of rice paddies in South 

Korea using ground flux data, meteorological variables, 

and satellite images. 



 

2. Data and Method 

2.1. Data 

To estimate NEE, ground flux tower data and 

numerical weather prediction data were used.  

The study was conducted by collecting data from flux 

towers installed in rice paddy in Naju (35.0275N, 

126.8208E) and Cheorwon (38.2013N, 127.2506E), 

South Korea (Fig.1). 

 

 
Figure 1. Study Area: (a) Naju Flux tower and (b) Cheorwon 

Flux tower 

As satellite images, normalized difference vegetation 

index (NDVI), which represent vegetation growth and 

vitality, leaf area index (LAI) and fraction of 

photosynthetically active radiation (FPAR) from the 

Moderate Resolution Imaging Spectroradiometer 

(MODIS) were used. 

As meteorological data, data from the Local Data 

Assimilation and Prediction System (LDAPS), a local 

forecast model operated by the Korea Meteorological 

Administration, were used. In this study, a total of 11 

variables were used: shortwave radiation (SWR), 

longwave radiation (LWR), sensible heat flux (H), soil 

heat flux (G), latent heat flux (LE), wind speed (WS), air 

temperature (Ta), surface temperature (Ts), soil 

temperature (Tsoil10), relative humidity (RH), 0~10cm 

soil moisture (SM). 

A total of 14 variables from satellite images and 

meteorological data were used to construct match-up 

dataset for the Naju and Cheorwon sites (Fig.2). Table 1 

summarizes the dataset used in this study, and Fig. 2 

indicates the process for constructing the machine 

learning-based modeling of NEE. 

 

Table 1. The dataset used in this study 

Data Source Variables 
Spatial 

resolution 

Temporal 

resolution 

Flux tower 
Net Ecosystem Exchange (NEE) (Naju) Point 30 minutes 

Net Ecosystem Exchange (NEE) (Cheorwon) Point Daily 

VIIRS Normalized Difference Vegetation Index (NDVI) 1 km 8days 

GK2A AMI Normalized Difference Vegetation Index (NDVI) 2 km Daily 

MODIS 
Fraction of Photosynthetically Active Radiation (FPAR) 500 m 8 days 

Leaf Area Index (LAI) 500 m 8 days 

LDAPS 

Shortwave Radiation (SWR) 

1.5 km 

3 hours 

(00, 03, 06, 09, 

12, 15, 18, 21 

UTC) 

Longwave Radiation (LWR) 

Sensible Heat Flux (H) 

Soil Heat Flux (G) 

Latent Heat Flux (LE) 

Wind Speed (WS) 

Air Temperature (Ta) 

Surface Temperature (Ts) 

Soil Temperature (Tsoil10) 

Relative Humidity (RH) 

Soil Moisture (SM) 

 

 

 
Figure 2. Process for constructing the machine learning-based modeling of net ecosystem exchange 

 



 

 
Figure 3. An overview of AutoML pipeline covering with 4 sections (Data Prepariation, Feature Engineering, Model generation and 

Model evaluation) (He et al., 2021) 

 

2.2. Methods 

Automated Machine Learning (AutoML) represents a 

computational framework designed to streamline pivotal 

tasks within machine learning workflows. These tasks 

encompass data extraction, model training, 

hyperparameter optimization, and exploration of neural 

network architectures (Jin et al., 2019). This automated 

process executes machine learning algorithms including 

Distributed Random Forest (RF), Generalized Linear 

Model (GLM), Extreme Gradient Boosting (XGBoost), 

Gradient Boosting Machine (GBM), and Deep Neural 

Network (DNN) using diverse initial parameter 

configurations. Subsequently, it discerns the optimal 

performing model by assembling an ensemble of the 

foremost N models (LeDel and Poirier, 2020). It 

autonomously manages tasks, such as algorithm selection 

and model tuning, which developers conventionally 

undertake manually and iteratively to enhance model 

performance. This automated approach culminates in 

efficiently optimized outcomes, as illustrated in Fig. 3. In 

this study, modeling was conducted utilizing the h2o 

library within the R programming environment. A cap of 

20 models was imposed, and the assessment of model 

performance was conducted through 5-fold cross-

validation. 

3. Results 

For the construction of the Net Ecological Exchange 

(NEE) model, observational data spanning from 2020 to 

2021 for the Naju flux tower and from 2015 to 2018 for 

the Cheorwon flux tower were gathered. Additionally, 

satellite image data and LDAPS hydrometeorological 

data were employed as inputs for model development. 

Utilizing the gathered data, we constructed three sets of 

matchups: one for Naju, another for Cheorwon, and a 

third combining data from both locations. Subsequently, 

AutoML modeling was conducted independently for 

each of these matchups. AutoML modeling was executed 

for 221 cases in Naju, 1272 cases in Cheorwon, and 1493 

cases in the combined dataset of Naju and Cheorwon. A 

total of 20 models were built for each dataset employing 

5-fold cross-validation methodology. Additionally, two 

ensemble models were generated from the outcomes. 

After comparing the performance of the 22 models 

constructed for each matchup, it was determined that the 

Gradient Boosting Machine (GBM) model exhibited the 

highest performance across all three datasets. 

Scatterplots and accuracy statistics for each model are 

illustrated in Figure 4 and Table 1, respectively. 

For Naju, the Mean Absolute Error (MAE) was 

determined to be 2.333 μmolCO2 m-2, the Root Mean 

Square Error (RMSE) was 3.678 μmolCO2 m-2, and the 

correlation coefficient was 0.604. Examination of the 

scatter plot results (Fig. 4(a)) reveals significant 

calculation errors particularly evident for both large and 

small values of NEE. For Cheorwon, the MAE was 

recorded at 1.139 μmolCO2 m-2, while the RMSE 

amounted to 1.707 μmolCO2 m-2. The CC was 0.924, 

underscores the model's high accuracy. Moreover, the 

scatterplot result (Fig. 4(b)) visually demonstrates a close 

distribution of observed and modeled values, aligning 

closely with a one-to-one line. Upon combining the data 

from Naju and Cheorwon, the calculated MAE was 1.387 

μmolCO2 m-2, with a RMSE of 2.203 μmolCO2 m-2. 

The CC for this combined dataset was determined to be 

0.872. From the scatterplot results (Fig. 4(c)), it is evident 

that calculation errors tend to be substantial, primarily 

attributed to the model's tendency to underestimate very 

large NEE values and overestimate very small 

observations. However, the errors are generally 

distributed in close proximity to the one-to-one line, 

indicating reasonable agreement between observed and 

modeled values across the spectrum. The presence of 

very large or small values of NEE can likely be attributed 

to the limited number of observations employed in the 

study, which restricts the model's ability to adequately 

train across a diverse range of observations. It is 

anticipated that as the dataset accumulates more data, the 

model's accuracy will improve, leading to better 

performance across the entire range of observations. 
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Figure 4. Scatter plots for the daily net ecosystem exchange from machine learning-based model: (a) Naju, (b) Cherowon, and (c) 

Naju and Cheorwon 

 
Table 2. Accuracy statistics of the daily net ecosystem exchange from machine learning-based model 

 MBE MAE RMSE CC 

Naju -0.089 2.333 3.678 0.604 

Cheorwon -0.010 1.139 1.707 0.924 

Naju+Cheorwon -0.015 1.387 2.203 0.872 

 

4. Conclusion 

In this research, a machine learning-driven 

computational model was developed employing satellite 

data and meteorological information to estimate the net 

ecological exchange for agricultural land in Korea. 

Individual models were constructed for Naju and 

Cheorwon, locations equipped with flux towers situated 

in rice paddy fields. Additionally, a composite model 

integrating data from both regions was constructed and 

subjected to comparative analysis. Consequently, our 

findings revealed a propensity for both underestimation 

and overestimation in instances of very large and very 

small NEE observations. This phenomenon is likely 

attributed to the limited number of observations 

incorporated in the study, thereby impeding effective 

training across a broad spectrum of observations. In the 

future, with the accumulation of observations pertaining 

to net ecological exchange fluxes and the development of 

a machine learning-based calculation model leveraging 

high-resolution satellite and meteorological data, there is 

a promising prospect for achieving enhanced stability 

and accuracy in calculations. 
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