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Summary. This paper shows how probabilistic limit analysis of statically indeterminate 

frame structures can be done with the same simplicity as the deterministic limit analysis.  
 

 

1 INTRODUCTION 

The authors have developed FEM based limit and shakedown analysis of structural problems 

with uncertain data by stochastic optimization as an alternative to plastic reliability analysis [1]. 

They have developed chance-constrained programming with individual chance constraints for 

normally and lognormally distributed strength and loading to calculate limit and shakedown 

loads for prescribed reliability levels with the FEM [2,3]. 

Limit analysis is mainly used in civil engineering practice and teaching in the analysis and 

design of statically indeterminate truss and frame structures. Therefore the chance-constrained 

program with individual chance constraints is formulated here for frame structures with 

uncertain plastic moments to demonstrate the application of the concept to the standard  

problem of a portal frame. Truss girders are discussed in [4]. 

2 DIRECT METHODS FOR PLASTIC ANALYSIS  OF FRAME STRUCTURES 

Consider a  retangular portal frame made of perfectly plastic elastic material as shown in 

Figure 1. There are two forces ,H V  acting on the frame. The elements in the set of forces may 

vary propotionaly with the same scalar factor  . The objective of limit analysis is to find the 

maximum of  at which the frame is collapses by plastic flow. There are two approaches to 

find the limit load factor  , the static approach and kinematic approach. 
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Figure 1: Portal frame subjected two forces 

2.1. Static approach 

The static approach is based on the lower bound theorem of limit analysis, according to 

which the safety factor is obtained as the maximum statically admissible load multiplier. This 

task leads to solving a maximum nonlinear optimization problem 

lim max
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The constraints in (1) are the Cauchy equations of equilibrium, static boundary conditions 

and conditions of plastic admissibility, respectively. 

2.2. Kinematic approach 

The kinematic or upper bound theorem states that the structure fails plastically if the 

internally (plastically) dissipated power inW  is less than the power exW  of the external loads for 

all kinematically admissible deformation rates. The limit load factor  +
 is the smallest 

kinematic load factor kin  so that the structure fails in kin exW W  or with normalized 1=exW  

that in kinW  . The upper bound limit problem can be stated as follows 
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The finite element method is used to discretize the problem (2). The frame structure of Figure 1 

is divided into ne  quadrilateral finite elements. If the von-Mises yield condition is used, the 

internal dissipated power of the frame is calculated as 

( ) 2
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D dA s dA
=

= + ε ε Dε          (3) 

 

By using Gauss integration technique the plastic dissipated power of frame is computed as  
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in which 0s  is the yield stress,  11 22 122
T

  =ε  is the strain rate vector  
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0  is a very small positive regularization number, 

ne  is the number of quadrilateral elements of the FEM model of the frame, 

NG  is the total number of Gauss points of the frame. 

The last constraint in Eq. (2) is the external power, it can be written in the form of stresses and 

strain rate. Using Gauss integration technique, the external power can be expressed 
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Finally, the FEM formulation of the problem (2) is as follows 
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3 STOCHASTIC MODEL FOR THE LIMIT ANALYSIS PROBLEM OF A FRAME 

in this section, we introduce a stochastic limit analysis model based on kinematic approach. 

The yield stress is an uncertain quantity, which is distributed normally or log-normally. The 

lognormal distribution assumes only positive strength data. 
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3.1. Equivalent deterministic formulation 

If the yield stress 0s  is a random variable, the objective function of the kinematic problem is a 

stochastic variable and the limit analysis problem is stochastic programming problem. We can 

state the problem in such a way that one looks for a minimum lower bound   of the objective 

function under the constraint that the probability   of violation of that bound is prescribed 

[2,3] 
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For sake of simplicity of notation, we denote the plastic dissipation 

  2
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2
( ) ( )
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i iX s  = +ε Dε              (8) 

Now the first constraint of (7) can be rewritten as:  
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In (9), ,X X   are mean value and standard deviation of ( )  . We can see in the inequality 

  X X
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that the left hand side is the normalized random variable with zero mean and unit variance. 

Using the property ( 1( ) )x x− = −  of the cumulative distribution function (c.d.f.) of the 

standard normal distribution, the probabilistic condition (9) is replaced by  
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Setting ( ) =   we have ( )1 X

X

 
 



− −
 = =  or X X  − = . Therefore, the 

chance-constrained program with individual constraints (7) has the deterministic equivalent 

with ( )1 −=  : 
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The mean value of ( )X   is as follows: 

2
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where is  is the mean value of the yield stress 0 ( )is  . The variance and standard deviation of 

( )X   are computed as 
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Thus we have: 
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In (15), ( )0is  is the standard deviation of the yield stress and we can denote it as id . 

Finally, we can write the discretized upper bound of limit load moving the chance 

constraint to the objective function for the case of normally distributed strength 
2
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If the yield stress is lognormally distributed 2

0ln ~ ( , )i iss d , the deterministic equivalent 

can be obtained after some transformations: 
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In (17) ,i i   are the parameters 
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of lognormally distributed yield stress. 

3.2 Algorithm to solve the upper bound limit problem of frame structures 

For convenient computation, some new varialbles are introduced: 
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The penalty method and the Lagrange method are used simultaneously to convert the problem 

(19) into an unconstrained programming. The penalty function is written as 
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here c  is a penalty parameter, 1c .  

Problem (19) now becomes 
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By using the Lagrange multiplier method the problem (21) is converted into an unconstrained 

programming problem with the Lagarange function: 
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Here   is the Lagrange multiplier. 

The Karush–Kuhn–Tucker conditions (KKT optimality conditions) gives the equations to obtain 

optimal solution  
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The Newton method is applied to solve the system (23) of nonliner equations. We get: 
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The detailed Algorithm can be found in [2,3]. 

4 NUMERICAL EXAMPLES 

Consider a portal frame clamped at the bases as shown in Figure 1. The reliability analysis is 

performed in [5] for lengths 1 5 ml h= = , 2 2 8 ml l= = , loads 4H kN= , 8V kN= . Mullions 

and transoms have random plastic moments characterized by mean values 12 kNpM =  and the 

standard deviations 1.2kNmMp = . With (18) the parameters for the lognormally distributed 

plastic moment are 2.4799=  and 0.0998= . 
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Let us determine the limit load factor   for the reliability level 0.9999 =  (failure probability 

41 10fP −= − = ) so that 1 1( ) (0.9999) 3.71902− −=  =  =  .  

   

(a) (b) (c) 

Figure 2: Collapse mechanism of the portal frame: (a) partial beam collapse, (b) sway collapse, (c) combined 

collapse. 

The portal frame has the indeterminacy three. Therefore, a complete collapse mechanism 

requires four plastic hinges. By the kinematic theorem we can compute the analytical upper 

bounds from the collapse mechanisms in Figure 2: 

Mechanism 1: beam mechanism, partial collapse with three plastic hinges. 
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With chance constraints for normally distributed 0s  
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Mechanism 2: sway mechanism, plastic collapse with four plastic hinges. 
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Mechanism 3: combined mechanism, plastic collapse with four plastic hinges. 
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The deterministic limit load factor of the frame model is  1 2 3 3min , , 1.3846= = =      and 

relates to the combined mechanism. The probabilistic limit load factor is 

 1 2 3 3min , , 0.8697= = =      and  1 2 3 3 0. 7mi 950n , ,= = =      if the yield stress 

assumes a normal and a lognormal distribution respectively. It also relates to the combined 

mechanism. 

For the FEM solution, the frame is modelled by 592 quadrilateral element. The size of 

the cross sections of mullions and transom are the same (1 cm x 8 cm). In the FEM model, 

2 8mL =  is counted between the neutral axes of the mullions as in Figure 3. It is assumed that 

the yield stress 0s  is the only source of the uncertainty of the plastic moment pM  so that the 

mean value is ( ) ( )2 2 2 24 12kNm 4 0.01m 0.08 m 750Nmmi Ps M bh −=  =   =  and the standard 

deviation is 
20.1 75Nmmi id s −= = . Results are shown in Table 1 and Figure 5. 

 

Figure 3: FEM mesh with 592 quadrilateral elements. The gaps in the structure show that he beams are longer 

and the dimensions that are not to scale are underlined. 

Table 1: Limit load factors for two models and different reliability levels 

Reliability 

level   

Failure 

prob. fP  

Frame model FEM model 

Determinist. Normal Lognormal Determinist. Normal Lognormal 

0.9999 10-4 

1.3846 

0.8697 0.9505 

1.52 

0.94 1.09 

0.999 10-3 0.9567 1.0121 1.08 1.18 

0.99 10-2 1.0625 1.0923 1.15 1.26 

0.5 0.5 1.3846 1.3778 1.52 - 

4cm 800cm 4cm

5
0

0
c
m

4
c
m
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Figure 4: Convergence of limit load factors for reliability level 0.9999=  (failure probability 410fP −= )  

 

Figure 5: Limit loads for various stochastic models (with random loads are not discussed here) with data of [5].  

The probabilistic   assumes the determinstic   for the normal distribution if 0.5.fP = =

The deterministic limit load factor of the FEM model is 1.52 = , which is larger than the limit 
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load factor 1.385 =  of the frame model. The same tendency holds for the pobabilitistic limit 

load factors for both distributions of the yield stress. The FEM limit analysis converges in 5-6 

iterations. Values 1   indicate that the structure is already overloaded for the chosen 

reliability level. The failure probabilty 2

1 1.187 10fP −=   of the partial beam collapse and 

2

3 0.877 10fP −=   of the combined collapse is calculated for the frame model with the First 

Order Reliability Method (FORM) in [5] for the case that also the loading is uncertain. All 

mechanisms contribute to the total failure probability. The lower bound 

  2

1 2 3 1min max , , 1.187 10f f f f fP P P P P −= = =   is assumed if the mechanisms are fully 

positively correlated. The upper bound ( ) ( ) ( ) 2

1 2 3max 1 1 1 1 2.054 10f f f fP P P P −= − −  −  − =   is 

assumed if the mechanisms are completely uncorrelated. The order of magnitude is similar to 

the results in Table 1. Currently our formulation with individual chance constraints cannot 

combine contributions of the different mechanisms. The lognormal distribution is preferred 

over the normal distribution for the plastic moment and for yield stress because they are always 

positive. 

5 CONCLUSIONS 

Probabilistic limit analysis can be made with the deterministic equivalent of the chance 

constraints for normally or lognormally distributed strength data. Then the analysis is basically 

the same as a deterministic limit analysis. The limit loads are obtained for any target reliability 

level, if the mean value and standard deviation of strength are available. The limit load has to 

be decreased greatly if a high reliability of the structure is required. Any statically indeterminate 

frame structure can be handled in the demonstrated way. The extension to uncertain loading 

can be done as shown in [3]. Future work has to be addressed to the question how a possible 

relevant contribution of several collapse mechanisms can be included in the analysis. 
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