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Abstract. The rapid digitisation has led to a surge in DCs energy consumption, projected
to reach 21% of global demand by 2030. This poses significant operational and environmental
impacts. The integration of IoT and sensors has generated vast amounts of operational data,
which, if effectively modelled, can enhance energy efficiency and reduce costs. Traditional so-
lutions are inadequate due to the complexity and non-linear system interactions of DCs and
the growing volume of monitored operational data. This paper develops a comprehensive hy-
brid CNN-LSTM deep learning model that combines Convolutional Neural Networks’ (CNNs’)
ability to recognise spatial and complex operational patterns with Long Short-Term Memory
(LSTMs’) strength in handling temporal dependencies to predict DC ambient temperature,
thereby enhancing energy efficiency while maintaining thermal compliance. Trained on opera-
tional data from the Enea HPC CRESCOG6 cluster and compared its effectiveness with CNN
and LSTM, the model outperformed CNN and LSTM models, achieving a Mean Absolute Error
(MAE) of 0.0401 in predicting ambient temperature every 15 minutes. A sensitivity analysis
with cooling fan speed set-points (+10%, +£25%, and £50%) showed the model’s adaptability,
with a £50% set-points demonstrates for monitoring and optimising cooling settings, ultimately
enhance energy efficiency.
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1 INTRODUCTION

Data Centres (DCs) are the core digital infrastructure of the modern economy. With the
increasing demand for data-driven applications, DC services are expanding rapidly, leading to
considerable energy consumption due to their high demand for cooling and power IT resources.
Currently they consume for approximately 3% of global electricity demand, and with the rapid
pace of digitisation, this figure is projected to increase to 21% by 2030 [1], equating 23% of the
total CO2 emissions. This could significantly impact the carbon-neutral economy by 2050.

According to a recent report, the energy efficiency of DCs, measured by the Power Usage
Effectiveness (PUE) metric, was found to be 1.58 [2]. The ideal PUE value is 1.0, indicating that
currently, 58-60% of the energy is dissipated as heat or energy overhead. Beyond the environ-
mental impact, if not effectively regulated, this excess heat can lead to critical issues, including
IT equipment failure, performance degradation, shortened equipment lifespan, and increased en-
ergy consumption due to inefficient cooling management. These can be attributed to over 20%
of total DC operational costs. This underscores the need for effective approaches to optimise
DC management, enhancing both energy and cooling efficiency. Effectively regulating fan speed
is essential for expelling exhaust heat generated from IT equipment while maintaining thermal
compliance and ensuring the safe operation of IT systems. This approach ultimately enhances
energy efficiency through improved cooling management, which largely relies on operational
optimisation.

The most commonly used methods for optimising DC energy and cooling efficiency include
heuristic approaches, such as those by [4], [5], [6] and [7], and Computational Fluid Dynam-
ics (CFD) approaches, as demonstrated in research by [8], [9], [I0] and [II]. These engineer-
ing formula-based solutions model, simulate, and regulate DC airflow. Additionally, statistical
and mathematical analytical approaches are employed to quantify and analyse operational be-
haviours, enabling informed decision-making. However, these solutions have struggled to yield
optimal results due to the growing physical complexity of DCs, their dynamically changing be-
haviours, non-linear system interactions, and the increasing volume of operational management
data. Traditional approaches are computationally expensive, lack adaptability, and often fail to
transform the vast amount of data into actionable insights. Furthermore, the sheer number of
possible configurations and fluctuating set points over time make it challenging to identify the
optimal solution. Given constraints such as time, I'T load variability, weather conditions, and
the need for a stable DC environment, evaluating every possible feature combination to optimise
efficiency becomes impractical with these rule-based and reactive methods.

More recently, data-driven Artificial Intelligence (AI) and Machine Learning (ML) approaches
have been introduced to effectively model and optimise DC operations. These methods excel
in learning from complex and vast amounts of data, enabling them to produce more accurate
predictions without relying on prior knowledge of the underlying physical infrastructure. For
instance, Google implemented a simple Neural Network (NN) machine learning model, claiming
a 40% reduction in cooling costs [12]. Other research, such as that by [13], applied various ML
models, including Random Forest (RF), eXtream Gradient Boost (XGB), and NN, demonstrat-
ing promising results in improving energy efficiency. Additionally, [I5] utilised ML for thermal
characterisation, thereby enhancing energy efficiency, while [16] showcased ML-based inlet tem-
perature characterisation and other like [I4]. These studies and others in literature highlight
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the potential of ML in optimising various aspects of DC operations.

However, these methods are still in their early stages and often focus on optimising cooling
and IT systems individually. This is problematic because these systems are strongly interdepen-
dent—optimising one can lead to efficiency trade-offs in the other. Additionally, environmental
conditions significantly impact overall energy efficiency, underscoring the need for a more inte-
grated optimisation approach that considers these complex interactions.

This research aims to develop a comprehensive hybrid CNN-LSTM deep learning prediction
framework to model plant DC performance and accurately predict DC room temperature (am-
bient temperature) every 15 minutes, thereby regulating cooling fan speed. This will ultimately
enhance energy efficiency and maintain thermal compliance. The model was selected for its abil-
ity to capture spatial hotspots and recognise complex operating feature interactions through its
CNN component, as well as its capability to capture temporal dependencies and predict future
temperature values using its LSTM component. It trained using various operational features of
DC encompassing IT, cooling and environmental features obtained from ENEA HPC CRESCO6
cluster, consists of 55 normalised features mapped to one normalised output (i.e, ambient tem-
perature). To evaluate the model’s robustness, adaptability, and responsiveness to the dynamic
operations of a DC, a sensitivity analysis was conducted. This analysis utilised various cooling
system fan speed set-points (£10%, +25%, and +50%) selected in consultation with domain
experts and tested through extensive experimentation using historical data, all while ensuring
compliance with ASHRAE operating standards. Sensitivity with larger values indicates that the
room for monitoring and optimising fan settings, ultimately enhance energy efficiency and ensure
thermal compliance. Hence, this paper will contribute a valuable approach in the field, enabling
operators to effectively plan and manage energy demand, enhance operational efficiency, reduce
energy and environmental costs through informed decision-making.

The rest of this paper is organised as follows: Section [2| details the methodology, including
model development processes and optimisation strategies, Section |3| presents the experimental
results and discussion, and Section presents sensitivity analysis , and Section [4] provides
conclusions and outlines future work.

2 Research Methodology

As illustrated in Fig. this research develops a holistic Al-driven framework specifically
designed to model and predict DC ambient temperature every 15 minutes, thereby optimising
cooling fan speed settings to enhance energy efficiency while maintaining thermal compliance.
Given the complex system interactions, dynamically changing DC operational behaviour, and
the increasing volume of operational monitoring data, this research focuses on a hybrid deep
learning method, CNN-LSTM, which combines CNN and Long LSTM networks. CNN-LSTM
uses the capability of CNN for capturing the complex operating features interaction and spatial
pattern recognition of the DC behaviour while LSTM uses for capturing the temporal depen-
dencies of the time series data to predict the next value. The model were trained using diverse
physical and operational data (see Section for data source and descriptions), capturing the
complex and non-linear interactions among features that influence ambient temperature. 70%
of the data was used for training, while the remaining 30% was reserved for model validation,
preserving time order. By learning from this comprehensive dataset, the model able to predict
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Figure 1: Al-driven Ambient temperature prediction and optimisation within the recommended thermal
condition.

DC ambient temperature accurately. The proposed model’s effectiveness was evaluated against
CNN and LSTM’s most effective NN models at solving complex challenges analogs to DC oper-
ating behaviours by training with the same dataset and operating platform. Their performance
evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) error metrics. The model with the lowest error is considered the most
suitable for accurately modelling and predicting ambient temperature within a DC.

Additionally, we simulates sensitivity analysis to evaluate the model’s adaptability and re-
sponsiveness to evolving conditions by adjusting various cooling system fan speed set-points (
+10%, +25%, and £50%). Fig. [1] illustrates that the framework development process involves
several key steps: Input data provided in Section model development and evaluation de-
tailed in Section [2.2] and a sensitivity analysis optimisation strategy by reconfiguring fan speed
detailed in Section3.dl

2.1 Data Source and Descriptions

This study uses training data from the ENEA HPC CRESCO6 cluster, consisting of 434
computing nodes and 20,832 cores. The data includes IT parameters (e.g., power, system util-
isation), cooling system parameters (e.g., air supply, fan speed), and environmental conditions
(e.g., temperature, humidity). These data streams are monitored by sensors and accessed via an
Intelligent Platform Management Interface (IPMI). The data is stored in MySQL across three
tables—IT, cooling system, and environmental data—collected at intervals ranging from seconds
to minutes.

After data collection, the necessary data preprocess performed for making it suitable for Al
and ML models. Irrelevant features were removed, and missing values were interpolated. The
data was resampled into 15-minute intervals and aggregated into a compact dataset of 34553
instances with 50 features, covering approximately one year. We then performed feature engi-
neering to extract temporal features, adding 5 key predictors. The final dataset was structured
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as 34553 instances with 55 features (see Section for details).
The features normalised into the same scale, and the values of a feature vector z are mapped
to the range [-1, 1], ready to fed the ML models, computed as:

z — mean(z)

Fnorm = maz(z) — min(z)

where 2, and zp,q; are the minimum and maximum values of the feature vector z, respectively.

2.2 Deep Learning Model Buildings

Before delving into the proposed CNN-LSTM model for ambient temperature prediction,
the descriptions and technical implementations of CNN and LSTM models are provided in the
following sections.

2.3 Convolutional Neural Network (CNN)

CNNs, introduced by Yann LeCun et al. in 1998 [I7], excel in spatial data tasks like image
processing and video recognition [I8], [19] and [20]. They learn spatial hierarchies through
convolutional layers and reduce dimensionality with pooling layers. CNNs come in three forms:
1D for sequential data, 2D for images, and 3D for volumetric data. Given the time-series nature
of DC operating behaviours, we use 1D-CNNs to predict DC ambient temperature. As shown
in Fig[2] our 1D-CNN model consists of five layers, including:

e Input Layer: The CNN processes a matrix of DC operating time-series data with 55 nor-
malised features (i.e., f1, f2, f3... fs5) over 24 time steps to predict ambient temperature.
provided feature lists and their descriptions.

e 1D-convolution (CovlD ) Layer: The ConvlD layer detects spatial patterns and sea-
sonality in the reshaped time-series data through the following computations:

— CovlD: The CNN uses convolutional filters to scan the time-series data, detecting
local patterns. For instance, with a filter size of 3 for processing 3 consecutive time
steps, makes the CNN more faster.

— Mathematically:Each filter performs element-wise multiplication with a segment of
the input data, sums the results, and slides across the entire data. If x is the input
data, k is the filter or kernel size, and b is the bias, the convolution output y will be
calculated as: y = (z % w) + b, where * denotes the convolution operation.

— After applying the filters, Re LU activation function is used to introduce non-linearity
into the model. This helps the model learn more complex patterns from the input
data x. It is calculated as : ReLU(z) = max(0, z)

yr = ReLU (w¢ «kyt + b) (1)

where y; is the output value after convolution, which depends on the hidden layer
or it is the final predicted output, ReLU is the activation function, x; is the input
feature, k; is the weight of the kernel, and b; is the kernel bias. The result g is part of
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the output feature map generated by the convolutional layer. The process is repeated
for all valid time steps, sliding the filter across the time-series data.

e Pooling Layer: This layer performs down-sampling by reducing the dimensionality of
the data while retaining essential features, helping to reduce computation and prevent
overfitting. Reduce the size of the feature map from Cov1D by applying a pooling operation
(e.g., max pooling): y ooled — maz(yy, yest, Yt+p—1). Where p is the pooling size and y} ooled
is the pooled output for time t. The output of the last pooling or convolutional layer is a
3D tensor of shape as (batch_size, length, channels). Where batch_size is the number of
samples in the batch, length is the number of time steps or sequence length after applying
convolution and pooling, and channels is the number of filters used in the convolutional

layer.

e Flattening Layer: This layer converts the pooled feature maps into a one-dimensional
vector (suitable for time series prediction), preparing the data input into fully connected
layers. The flatten layer takes the 3D tensor and converts it into a 2D tensor by collapsing
the length and channels dimensions into a single dimension. The flattened output
shape will be (batch_size, length  channels), which is Flatten(F;) = flatten (y7°"°?). For
instance, the output from the previous CovlD layer has shaped as (32, 24, 55), then: The
flatten layer will convert each sample’s output into a 1D vector of size 24 x 55 = 1320.
The resulting shape after flattening will be (32, 1320), where 1320 is the total number of
features for each sample.

Hence, the flattening is crucial because the subsequent fully connected layers expect a 1D
input, where each node in the fully connected layer is connected to every feature in the
flattened vector. This step is necessary for the model to learn from the spatial patterns
detected by the convolutional layers. This flatten layer reshapes the 3D tensor output
from Cov1D layers into a 2D tensor, where each sample’s data is represented as a one-
dimensional vector. This operation is critical for transitioning from convolutional layers
to fully connected layers in a neural network.

e Fully Connected Layers: These layers are used to perform the final prediction result.
The input to the fully connected layer is a 2D tensor, typically obtained after flattening
the output of the last convolutional or pooling layer. Let’s denote this input as a vector
x of size n, where n is the number of features (e.g., n could be 1320 as calculated in
the flattening step above). Hence the input of the full connected layer represented as:
x = [x1,x2,...,2,]. The fully connected layer has weights and biases that need to be
learned during training. Suppose the fully connected layer has m neurons. The weight
matrix w will be of size m x n, and the bias vector b will be of size m. Therefore, The
output of the fully connected layer is computed by performing a matrix multiplication
of the input vector x with the weight matrix w, and then adding the bias vector b. As
illustrated in Fig. |2, the Fully Connected Layer (FCL) is shaped as Dense (64, 1). Here,
64 refers to the number of units in the FCL, and 1 represents the predicted output, which
is the DC ambient temperature prediction.

Ambient temperature prediction = y; = w; * x + b;. (2)
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This approach utilises CNNs to capture spatial patterns and correlations among various
operational parameters, providing accurate predictions of DC ambient temperature within
the data center environment. The model’s granularity in predicting temperature at every
time ¢ allows for precise and timely forecasts. This enables optimal thermal performance
by making decisions based on the predictive outputs.

Following the detailed technical implementation procedures, as illustrated in Fig2] we de-
veloped a 5-layer 1D-CNN using the Keras library. Keras is a user-friendly interface written in
python for defining neural network architectures, compiling models, and fitting them to data.
The optimal hyperparameters, as shown in Table |3 were determined through extensive exper-
imentation. We adjusted parameters such as kernel size and learning rate, among others, to
identify the configurations that yielded the best performance. The parameters listed in the
table represent those that produced the most effective model.

2.4 Long-Short-Term-Memory (LSTM)

LSTM (Long Short-Term Memory), proposed by Schmidhuber et al. in 1997 [21], is designed
to analyse sequential data by addressing gradient issues in traditional RNNs. Unlike RNNs,
which struggle with long-term dependencies due to vanishing or exploding gradients, LSTMs use
a complex architecture with input, forget, output, and cell state gates. This structure effectively
maintains and updates memory, making LSTMs well-suited for time-series predictions. The
LSTM architecture, shown in Fig. includes internal memory ¢; and three gates: the forget
gate f;, the input gate 7;, and the output gate o,. The memory ¢; tracks input sequence
dependencies, while the gates manage information flow. The forget gate f; determines what
information to remove from the cell state ¢;, allowing LSTM to maintain relevant long-term
dependencies and make accurate time-series predictions.

e Processing through LSTM Cells: The LSTM processes the input sequence (which may
include various features related to data center operations) through its network of cells.
Fach cell computes intermediate states based on the forget gate, input gate, and cell state
updates. Here, how each component of the LSTM cell works is given as follows:

— Forget Gate (f):
ft:U(wf* [ht—lvxt]_‘_bf)» (3)
Where:
fiis the forget gate activation, ranging between 0 and 1.
wy represents the weight matrix for the forget gate.

*
*

* by is the bias term for the forget gate.

* x¢ is the input feature at the current time step t.
*

h;_1 is the output from the previous time step.
— Input Gate (i;) and Candidate Cell State ¢;:

it = 0 (Wix [hy—1, 4] + b;), (4)
¢ = tanh (we * [hi—1, ) be) (5)
Where:
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*

1y is the input gate activation, also ranging between 0 and 1.

*

w; is the weight matrix for the input gate.

*

b; is the bias term for the input gate.
% ¢ is the candidate cell state, calculated using weights w, and bias b..

— Cell State Update (c;):

ct = (freci—1 +ig % ¢) (6)
Where:
x ¢; represents the updated cell state. This state is a combination of the previous
cell state.

* ¢;_1 modulated by the forget gate f; and and new candidate values ¢; modulated
by the input gate ;.

— Output Gate (0;) and and Hidden State (h):

or = 0 (W * [hy—1, 2] + by) (7)
ht = O¢x* tan h (Ct) . (8)
where:
* o¢ is the output gate activation, ranging between 0 and 1.

*

w, is the weight matrix for the output gate.

*

b, is the bias term for the output gate.

*

h; is the hidden state that will be passed to the next time step and used for the
final prediction. It is calculated by applying the output gate 0; to the cell state’s
tanh function.

The output h; represents the DC ambient temperature prediction at time step t. We built
a five-layer LSTM model using 55 normalised features and a 24-minute time step, mapped to
one normalised output (ambient temperature). Optimal hyper-parameters for the LSTM model
were identified through parameter tuning, as detailed in Table

2.5 Proposed Hybrid CNN-LSTM Prediction Model

Following the CNN and LSTM descriptions, the proposed CNN-LSTM model integrates
CNN for spatial feature extraction with LSTM for capturing temporal dependencies, predicts
DC ambient temperature every 15 minutes and optimises cooling settings. Figure [] shows the
CNN-LSTM architecture, which includes input, Conv1D, pooling, LSTM, and Dense layers. The
main steps for CNN-LSTM-based DC ambient temperature training and prediction procedures
are as follows:

1. Input data: The CNN-LSTM model is trained using data on IT loads, cooling system pa-
rameters and environmental conditions factors, capturing key aspects influencing ambient
temperature.



Yibrah Gebreyesus, Damian Dalton, D.De Chiara and M.Chinnici

. Data standardisation: The operational data is normalised and structured into 24-minute
time series sequences. The model uses 55 normalised features per sequence to predict the
DC ambient temperature.

. Initialise weights and biases by setting each CNN-LSTM layer’s weights and biases to their
starting values.

. The input data were sequentially transmitted via a convolutional process of the time-series
data, capturing local spatial patterns within the input sequences. Pooling layers reduced
the dimensionality of the feature maps generated by the convolutional layers, retaining the
most relevant features while minimising computational complexity.

. The output from the CNN layers is passed to LSTM layers, which capture the temporal
dependencies within the time series data. The LSTM layers maintain memory states that
allow the model to learn and retain information over long sequences.

. The output from the LSTM layers is flattened into a one-dimensional vector. This flattened
vector is then passed through fully connected (dense) layers that combine the learned
features and predict the ambient temperature.

. The output value computed by the output layer was compared with the true value of the
data collection, and the related error was calculated.

. The predicted result was compared with the actual values, the hyper-tuning parameters
were configured, and the model was trained again iterative until produce good result.

. Finally, retained the forecasting ready trained model for production data.
Note: The technical details for CNN and LSTM are outlined in Sections 2.3l and 2.4l

Following the description of the proposed CNN-LSTM architecture, the optimal hyper-
parameters used for implementing the model are presented in Tabldb]

2.6 Model performance Evaluation Metrics

To evaluate the model performance, we used MAE, MSE, and RMSE error metrics com-
puted as given in equations (9-11), respectively. The formulas calculated the deviation between
predicted (g;) and actual values y;. The computation is performed on the 20% of testing data.

MAB(y, ) = Tt WiV 0
n—1l/ = ~\2
M8y, g) = 20 V=0 (10)

RMSE(y.5) = \/ Lol n b (1)

n

where y; is the predictive value at time point ¢, y; is the actual value n is the total testing sample.
The lower the MAE, MSE, and RMSE values, the better the model performed at predicting DC
energy consumption. y is nothing but the target variable (energy consumption).
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3 Experimental Results and Discussions

This section presents the performance analysis and computational time complexity of the
CNN, LSTM, and CNN-LSTM models for ambient temperature prediction. The models were
trained on 70% of the data and validated on 30%, under consistent operating conditions. Their
performance is evaluated using MAE, MSE, and RMSE, key error metrics for time series model
performance analysis. Based on the experiments, Table [I| presents the performance analysis and
computational time metrics of the models on the testing data. According to the experimental
results, the hybrid CNN-LSTM model outperformed CNN and LSTM, achieving a lower MAE of
0.0331, MSE of 0.00251, and RMSE of 0.0501 while maintaining reasonable computational time.
When compared to CNN-LSTM and LSTM, CNN is faster but performs less effectively due to
its limitations in handling temporal dependencies. Specifically, CNN has an MAE of 0.0812,
an MSE of 0.00352, and an RMSE of 0.0593, which are higher error than those of CNN-LSTM
and LSTM. On the other hand, LSTM outperforms CNN in handling temporal dependencies,
achieving an MAE of 0.0352, an MSE of 0.00341, and an RMSE of 0.00251. However, LSTM
is slower than CNN due to its lack of parallel processing and its reliance on sequential feature
extraction.

Table 1: Comparison of DC ambient temperature prediction methods evaluation indexes.

Methods optimal feature set ~ MAE MSE RMSE execution_time(sec)

CNN 95 0.0812  0.00352  0.0593 328
LSTM 55 0.0352  0.00341  0.0584 340
CNN-LSTM 55 0.0331 0.00251 0.0501 330

According to the experimental results, the CNN-LSTM model performed best by leverag-
ing CNN’s ability to capture spatial features and automate feature extraction, combined with
LSTM’s strength in modelling temporal dependencies, leading to the most accurate prediction
of DC ambient temperature. Hence, compared to the other neural networks (NNs), the CNN-
LSTM model is identified as the most suitable for modelling DC ambient temperature. Following
this, a sensitivity analysis is conducted using various cooling system fan speeds to assess the
CNN-LSTM model’s adaptability and responsiveness to the evolving conditions (see section.

3.1 Optimising Cooling Efficiency and Ambient Temperature Regulation: Sensi-
tivity Analysis and What-if Scenarios

Following the optimal model identification, a sensitivity analysis was conducted using varying
cooling system fan speed set-points (£10%, £25%, and +50%). These set points were selected
based on intensive experimentations and domain expert consultation. This analysis assessed how
these changes impact ambient temperature predictions, aiming to identify optimal fan settings
for thermal compliance and energy efficiency. The sensitivity analysis was applied to the last
24 time steps of the testing dataset to predict the next value and observe model performance
under varying fan speeds. The sensitivity analysis, conducted using historical operational data,
involves the following procedures:

1. Model Setup: Set a baseline DC ambient temperature prediction using historical data

10
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where the fan speed is recorded along with other operational variables. This serves as the
reference scenario for comparison.

2. Adjust Fan Speed Set-Points: Modify the fan speed set-points by +10%, +25%, and
+50%. These adjustments are designed to explore the effect of varying fan speeds on
ambient temperature predictions.

3. Simulate with Adjusted Set-Points: Perform simulations using the CNN-LSTM model with
the adjusted fan speed settings. Maintain other operational variables constant to isolate
the impact of fan speed changes on ambient temperature predictions.

4. Analyse Results: Compare the simulation results with the baseline predictions to assess
how different fan speed adjustments influence ambient temperature. Analyse the impact
to determine the most effective settings.

5. Optimisation of Fan Speed Settings: Based on the sensitivity analysis results, optimal
fan speed settings are identified. These settings aim to balance thermal management
and enhance energy efficiency, providing recommendations for effective cooling system
operation.

6. Finally, the findings from the sensitivity analysis enables to monitor, control and optimise
fan settings, ultimately enhance energy efficiency while ensure thermal compliance.

The sensitivity analysis for each cooling system fan speed set point can be calculated based
on the following assumptions:

1. Calculation Method: If a 10% increase in fan speed results in a 5% increase in the predicted
ambient temperature, the sensitivity is calculated as:

Percentage Change in Prediction Result

Senstivity =
vy Percentage Change in Fan Speed

2. Interpretation: A smaller sensitivity value indicates a more stable model, with less impact
from variations in fan speed. Conversely, a larger sensitivity value implies that greater
attention is needed to monitor, control, and optimize fan speed to effectively regulate
thermal performance within the DC.

3. Optimal Model Selection: The model with greater responsiveness to fan speed variations
proves to be the most effective for modelling and predicting DC ambient temperature. Its
ability to adapt to changes in cooling system fan speeds demonstrates enhanced stability
and robustness, making it well-suited for maintaining optimal thermal conditions in the
DC.

Table [2 illustrates sensitivity analysis results simulated from historical data using + 10%, =+
25%, and + 50% cooling system fan speed controllable variable set-point. These set-points
represent six different scenarios: the (4) sign indicates an increase in fan speed by the specified
percentage, while the (-) sign indicates a decrease by the given percentage. These set points
are applied to the last 24 time steps of the testing dataset to predict the subsequent values and

11
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analyse how variations in fan speed influence the predictions. To assess the impact of fan speed
variations on the CNN-LSTM-based DC ambient temperature predictions, we first establish a
baseline by evaluating the CNN-LSTM model’s predictions on unseen data with measured fan
speeds and other features. This baseline serves as a reference for detecting the effects of changes
in fan speed on the prediction results.

Refer to Table [2| where column 2 presents the baseline predicted results and column 5
shows predicted result after fan speed adjustments. By comparing these with the results from
different fan speed scenarios, we can observe how variations in fan speed affect the predictions.
This comparison allows us to identify the optimal fan settings that minimise error indices and
improve thermal performance.

Table 2: What-if sensitivity analysis results.

Method Baseline(°C)  Scenarios fan_speed After(°C)
CNN-LSTM 16.0564 1 +10% 16.021

- 16.0564 2 —10% 16.0918
- 16.0564 3 +25% 15.6856
- 16.0564 4 —25% 16.447
- 16.0564 5 + 50% 15.215
- 16.0564 6 — 50% 17.08

To calculate the sensitivity when the fan speed scenarios are applied, we can use the following

formula:

. Percentage Change in Prediction Result
Senstivity =

Percentage Change in Fan Speed

The empirical results presented in Table [2| can be interpreted as follows:

e Scenario (1): Increasing the fan speed by 10% results in a 0.220% decrease in the CNN-
LSTM predicted ambient temperature. Sensitivity is calculated by dividing the percentage
change in the predicted temperature by the percentage change in fan speed.

0.220%
10%

Thus, a sensitivity value of 0.022 indicates the CNN-LSTM model’s responsiveness to fan
speed changes.

Senstivity = = 0.022

e In Scenario (2), a 10% decrease in fan speed leads to a 0.221% increase in the CNN-LSTM
predicted ambient temperature.

0.221%

= 0.0221
10%

Senstivity =

Thus, a sensitivity value of 0.0221 indicates the CNN-LSTM model’s responsiveness to fan
speed changes.

12
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e In Scenario (3), where the fan speed is increased by 25%, the observed change in the
CNN-LSTM predicted result is a 2.3% decrease. Therefore, the sensitivity is calculated as
is in Scenario (1). Hence, Sensitivity =

2.3%
25%

Thus, a sensitivity value of 0.0923 indicates larger sensitivity to CNN-LSTM model’s
responsiveness compared the previous set-points.

Senstivity = = 0.0923

e In Scenario (4), where the fan speed is decreased by 25%, the CNN-LSTM model’s pre-
dicted result shows a 2.43% increase. The sensitivity analysis is calculated as follows:
Sensitivity =

2.43%

25%

This sensitivity value of 0.097 indicates a high responsiveness of the CNN-LSTM model’s
predictions to decreases in fan speed.

= 0.097

Senstivity =

e In Scenario (5), where the fan speed is increased by 50%, the CNN-LSTM model’s predicted
result shows a 5.24% decrease.

25.24%
50%

This sensitivity value of 0.105 indicates a high responsiveness of the CNN-LSTM model’s
predictions to decreases in fan speed.

Senstivity = = 0.105

e In Scenario (6), where the fan speed is decreased by 50%, the CNN-LSTM model’s pre-
dicted result shows a 6.38% increase. The sensitivity analysis is calculated as follows:

Sensitivity =
6.38%
Senstivity = =0.128
enstivity = —or
This sensitivity value of 0.128 indicates a high responsiveness of the CNN-LSTM model’s
predictions.

To summarise, sensitivity analysis is crucial for optimising DC operations by revealing how
changes in key variables affect critical outputs. It enables better decision-making for performance
optimisation and risk mitigation. The experimental results show that the AI model is adaptable
and responsive to changing conditions. Larger sensitivity values highlight scenarios that need
close monitoring and optimisation—such as the £50% fan speed changes observed, which signifi-
cantly impact ambient temperature and are thus prioritised for optimisation. Smaller sensitivity
values indicate stable operations.

4 Conclusions and Future Works

In conclusion, the integration of Al-driven DC management can significantly improve energy
efficiency, yield significant operational cost savings, and reduce footprints. For instance, the
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proposed hybrid CNN-LSTM deep learning-driven framework is suitable for modelling plant
performance learning from data and accurately predicting ambient temperature every 15 min-
utes with an average MAE of 0.0331. Its responsiveness and adaptability to evolving conditions
demonstrate the model’s suitability for dynamically predicting ambient temperature in rapidly
changing scenarios within the DC. The sensitivity analysis reveals that a £50% adjustment in fan
speed showed greater sensitivity, highlighting areas that require closer monitoring, control, and
optimisation. This approach ultimately enhances energy efficiency while maintaining thermal
compliance align with the ASHRAE guideline’s temperature range of 18°C to 27°C, allowable to
15°C to 32°C. Integrating this Al-driven approach can address the complex energy efficiency and
optimisation challenges, yet traditional engineering tools are challenging to achieve. By inte-
grating this technology, DC operators can effectively plan, manage and optimise DC operations
while reducing energy and environmental costs.

Although our predictive model has shown promising results, we acknowledge the potential
challenges and limitations of our study. For instance, accessing enough data quality and real-
time operation requires extensive DC experts. Therefore, continuous monitoring, model recal-
ibration, and real-time data integration are essential for maintaining accuracy over time. Our
future research will primarily focus on expanding the model using larger datasets and modelling
sensitivity analysis approach with different time length and seasonal variations.
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Appendices

This section provides detailed feature lists and descriptions of the model architectures, oper-
ational processes, and hyperparameters used to implement the models with the Keras Python
library.

A part-1: Features
A.1 List of features and descriptions

1. Timestamp_measure: is datetime for reading data streams from sensors (in min).
2. sys_power: is the total instantaneous Power of each node (watt).
3. cpu_power: is the CPU instantaneous Power of each node (watt).
4. mem_power: is each node’s RAM memory instantaneous Power (watt).
5. fanla: is the node fan speed expressed in RPM (revs per minute)
6. fanlb: is the fan Fanlb installed in the node expressed in RPM
7. fan2a: is the fan Fan2a installed in the node expressed in RPM
8. fan2b: is the fan Fan2b installed in the node expressed in RPM
9. fan3a: is the fan Fan3a installed in the node expressed in RPM
10. fan3b: is the fan Fan3b installed in the node expressed in RPM
11. fan4a: is the fan Fanda installed in the node expressed in RPM
12. fan4b: is the fan Fan4b installed in the node expressed in RPM
13. fanba: is the fan Fanba installed in the node expressed in RPM
14. fan5b: is the fan Fanbb installed in the node expressed in RPM
15. sys_util: is the percentage of use of the system (%)
16. cpu_util: is the percentage of use of the CPU’s(%).
17. mem_util: is the percentage use of the RAM (%).
18. io_util: is the node I/0O traffic

19. cpul_Temp: is the CPU1 temperature (°C)
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20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46.

cpu2_Temp: is the CPU2 temperature (°C)
sysairflow: is the airflow of the node in CFM (cubic feet to minute) .
exh_temp: is the exhaust temperature (air exit of the node) in (°C)

amb_temp: is the ambient temperature/room temperature in (°C)

dcenergy: is the DC energy demand (target variable) (Kwh) (Target variable)

supply _air: is a cold air or inlet temperature (°C)

return_air: is the ejected heat or warm air to the outside (°C)
relative_umidity: is the working humidity of the CRAC in (°C)
fan_speed: is the speed of the CRAC cooling system (RPM)
cooling: is the working intensity of the CRAC (%)

free_cooling: Not applicable, it is 0 values

hot103_temp: is the hot temperature monitored by hot103 sensor.
hot103_hum: hot_humidity monitored by hot103 sensor.
hot101_temp: hot temperature (°C) monitored by hot101 sensor.
hot101_hum: hot_humidity (%) monitored by hot101
hot111_temp: hot temperature (°C) monitored by hot111 sensor.
hot111_hum: hot_humidity (%) monitored by hot111 sensor.
hot117_temp: hot temperature (°C) monitored by hot117 sensor.
hot117_hum: hot_humidity (%) monitored by hot117 sensor.
hot109_temp: temperature (°C) monitored by hot109 sensor
hot109_hum: hot_humidity (%) monitored by hot109 sensor.
hot119_temp: hot_temperature (°C) monitored by hot119 sensor.
hot119_hum: hot_humidity (%) monitored by hot119 sensor.
cold107_temp: cold_temperature (°C) monitored by cold107 sensor.
cold107 _hum: cold_humidity (%) monitored by cold107 sensor.
cold105_temp: cold_temperature (°C) monitored by cold105 sensor.

cold105_hum: cold_humidity (%) monitored by cold105 sensor.
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47.
48.
49.
50.
51.
52.
53.
54.

55.

cold115_temp: cold_temperature (°C) monitored by cold115.
cold115_hum: cold_humidity (%) monitored by cold115 sensor.
cold113_temp: cold_temperature (°C) monitored by cold113 sensor.
cold113_hum: cold_humidity (%) monitored by cold113 sensor.
hour: hours of the day

day: days of the week

month: months of the year

quarter: quarter of the year

Holidays:holidays of the year.

B part-2: Hyperparameter settings

B.1

Setting Models hyper-parametter

Table 3: Hyperparameters setting of a CNN with 55 normalised input features in 24 minutes window _size.

parameters Values
input tensor 64%24*55
kernel 3
Activation function relu
Fully Connected Layer 64*3
Time steps 24
Output layer 64*1
Optimiser adam
Loss function mse
epochs 100
batch_sizes 32

C part-3: Architectural view of the models

C.1

Models architectural overview
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Figure 2: Architecture of CNN-based ambient temperature prediction.
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Figure 3: Basic LSTM Cell structure diagram [21].
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Table 4: Hyperparameters setting of a LSTM with 55 normalised input features in 24 minutes win-
dow _size.

parameters Values
input tensor 64*24*55
LSTM layers 4
Units 64
Time steps 24
Activation layer Relu
Dense layer 64*1
Optimiser adam
Loss function mse
epochs 100
batch_sizes 32

Table 5: Hyperparameters setting of a CNN-LSTM with 55 normalised input features in 10 minutes
window _size.

parameters Values
input tensor 64%24*55
ConlD layer filter 32
kernel 3
Activation function relu
Pooling layer _size 2
pooling activation function relu
Number of LSTM layers 3
LSTM layers units 64
LSTM layer activation function relu
Time steps 24
Dense layer 64*1
Output layer 64*1
Optimiser adam
Loss function mse
epochs 100
batch_sizes 32
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Figure 4: Architecture of CNN-LSTM Regressors for DC ambient temperature prediction.
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