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Summary. This paper presents the applicability of a novel strong coupling methodology in 

maintaining continuity across adjacent patch interfaces in multi-patch isogeometric analysis. 

FGM sandwich plate is modelled using refined higher-order shear deformation theory, and the 

present IGA formulation is validated with past literature on FGM hardcore and softcore 

arrangement. The free vibration analysis of the FGM plate having multi-patch geometries is 

conducted to test the accuracy of the proposed coupling. The results show the optimal accuracy 

and effectiveness of the coupling algorithm to enforce continuity across arbitrarily shaped 

patches for vibration analysis of FGM sandwich structure with cutouts. 
 

1 INTRODUCTION 

The FGM sandwich structure has received much attention due to its lightweight design and 

tailored mechanical properties. The distinctive characteristics of these plates are extensively 

researched, particularly relating to load-bearing constructions that require specific stiffness, 

thermal resistance, and strength distribution across their thickness [1]. These structures are 

generally considered for aerospace, aircraft, and defence applications, where vibration analysis, 

a crucial factor in designing, plays a significant role in ensuring their structural integrity and 

performance [2].  Hadji et al. [3] performed free vibration analysis on FGM-based sandwich 

plates using four variable-based refined plate theory (RPT). The equation of motion was derived 

using the Hamilton principle and solved by Navier’s technique. The validation and accuracy 

were compared with other plate theories. Thai et al. [4] performed an HSDT analysis of FGM-

based sandwich plates under thermo-mechanical loading. The governing equation was derived 

from the Galerkin form and solved numerically using IGA. Liu et al. [5] studied free vibration 

analysis of FGM sandwich structure with both face sheets and core made of being functionally 

graded following a power law function. Van et al. [6] performed an isogeometric analysis of a 
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multi-layer FGM structure with graphene-reinforced platelets on composite nanoplates. IGA 

was proven effective in solving the kinetic equations and subsequent analysis of graphene 

microbeams. 

 

Holes and intrinsic profiles significantly affect the natural frequencies compared to 

monolithic plates. Hence, understanding the vibration characteristics of sandwich structures 

with cutouts is vital. In IGA, these structures are modelled using multi-patch geometries that 

break the C1 continuity near the adjoining patch junction. To resolve this issue, researchers 

developed patch coupling techniques for solving the higher-order PDE [7].  Wang et al. studied 

geometries with arbitrary-shaped cutouts for conducting free vibration analysis of stiffened 

plates using IGA-based HSDT formulation and Nitche method. In [8], they extended their work 

to stiffened composite plates and studied the natural frequency responses for different fibre 

orientations, angles, shapes and sizes using IGA and HSDT. Devarajan and Kapania [9] 

investigated multi-patch composite structures and used the Nitche method to predict the critical 

thermal buckling load on composite structures. He et al. [10] used the Nitche method to 

investigate the thermal behaviour of arbitrarily shaped complex plates using IGA and adaptive 

refinement strategies. However, the Nitche method needs additional stabilisation parameters to 

weakly enforce continuity along the patch boundary. However, strong coupling methods 

enforce continuity by generating approximate basis functions that are continuous over the patch 

junction edge and throughout the domain without any additional conditioning in the weak form. 

Its effectiveness in the topology optimisation of plates is discussed in [11] for multi-patch 

geometries and efficient patch coupling. However, vibration analysis of FGM sandwich 

structure using such strong coupling methodologies is absent in the literature. 

 

This paper presents a novel application of the strong coupling methodology proposed by 

[12] to model complex FGM sandwich structures with multi-patch geometries using refined 

HSDT formulation. Frequency responses of sandwich plates with circular holes and arbitrary 

patches are studied, and the effectiveness of the coupling algorithm is demonstrated.  

 

2 REFINED HSDT FORMULATION FOR FGM SANDWICH STRUCTURE 

Let us consider a sandwich panel with three layers of plate structure, as shown in Fig. 1, 

where the top and bottom face plates are made of FGM material, and the core has a homogenous 

property distribution. The FGM plates gradually vary in geometrical properties from ceramic 

to metal or vice versa based on the core configuration along the thickness. The softcore 

arrangement has a metallic core, and hence, the FGM properties vary from ceramic to metal 

from the face surface to the inner region. Contrary to this, the core is made of ceramic material 

in a hardcore arrangement, and the FGM properties vary from metal to ceramic. The variation 

of Young’s modulus and density of the FGM plates for both core arrangements is given by, 
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Figure 1: FGM sandwich structure layer-wise distribution with homogenous core. 

4.1 Refined HSDT and Equation of motion 

To determine the displacement field, refined higher order shear deformation theory  is used 

without considering any shear correction factor 
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0u , 0v : denotes in-plane displacement along the x and y directions 

bw , sw : component of bending and shear of transverse displacement 

The linear strain of the displacement field expressed by Von-Kerman principle as: 
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Where, 



Lokanath Barik, Abinash Kumar Swain. 

 4 

0,

0 0,

0, 0,

x

y

y x

u

v

u v



 
 

=  
 

+ 

,  

,

1 ,

,2

b xx

b yy

b xy

w

w

w



 
 

= − 
 
 

,  

,

2 ,

,2

s xx

s yy

s xy

w

w

w



 
 

=  
 
 

,  
,

,

s x

s

s y

w

w


  
=  
  

 

The constitutive relation between stress and strain field from Hook’s law can be written as 
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Stiffness coefficients are defined accordingly 
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The governing equation for equilibrium derived from the Hamilton’s principle as 

 
0
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Where the virtual strain energy defined as 
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The general form of strain vector defined in the form of 

 0 1 2

T
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Both potential energy and kinetic energy defined in equation (6) and (7) respectively 
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 ( ) TK u z udv  =   (7) 

For determining the kinetic energy, vector u defined from the displacement field 
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Substituting equation (8) in equation (7) 
T

K u mud 


= −   

where 

 0 1 2  
T

u u u u=  

And m is the mass matrix 

0

0

0

0 0

0 0

0 0

I

m I

I

 
 

=
 
  

, where  

1 2 4

0 2 3 5

4 5 6

I I I

I I I I

I I I

 
 

=
 
  

 

.
2

2 2

1 2 3 4 5 6

2

( , , , , , ) ( )(1, , , ( ), ( ), ( ) )

h

h

I I I I I I z z z f z zf z f z dz
−

=  . 

By combining above equations of different energy, the Hamilton equilibrium principle 

rewritten in the form as given 

 ( )
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3 MULTIPATCH COUPLING AND IGA FORMULATION 

The NURBS basis functions are C1 continuous within the defined domain of knot vectors. 

In multi-patch geometries, where two or more patches intersect, C0 continuity is observed. The 

basis functions responsible for discontinuity near the junction are removed, and a new set of C1 

smooth isogeometric functions are developed using a linear combination of these pre-existing 

C0 bases following the approach of [12]. These modified bases are further used for NURBS-

based discretization and solving the equation of motion. Based on 2-D NURBS basis functions, 

the displacement considered is as follows 
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Where eN is the modified NURBS shape function 
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Substituting equation (10) in governing equation (9) we get 

 Kd Md f+ =  (11) 

Where K is the stiffness 
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And f is the force vector expressed as 
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Free vibration considered without external force vector is rewritten as 

 0Kd Md+ =  (12) 

 
0( , ) ( ) i td x t D x e=  (13) 

 
2( ) 0K M d− =  (14) 
2( ) 0K M d− =  

Where d  is the nonzero displacement and  is the natural frequency. 

 

4 RESULTS AND DISCUSSIONS 

In this section, we discuss the results obtained from the FGM sandwich plate with softcore 

and hardcore arrangements. The sandwich plate comprises Aluminum (Al) having metallic 

constituents and Alumina (Al2O3) as the ceramic part, having mechanical properties 
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70 GPamE = , 32707 Kg/mm = , 0.3m =  and 380 GPacE = , 33800 Kg/mc = , 0.3c =

respectively. The boundary conditions (B.C) are applied to the outer boundary of the sandwich 

plate, which is mainly simply supported (SSSS) and clamped (CCCC) types. Numerical results 

are obtained using modified C1 coupled basis functions in multi-patch geometry formulation. 

Based on the approximations, ( 1) ( 1)p q+  +  gauss points are selected for integration over 2D 

domains. The B.Cs influence over the degrees of freedom are given by, 

Simply supported (SSSS): 
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b s
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= = = =
 (15) 

Clamped (CCCC): 

 
0 0 , , 0 b s b n s nu v w w w w= = = = = =  (16) 

4.1 Validation of FGM sandwich plate 

Numerical validation of the proposed NURBS-based refined HSDT model with IGA multi-

patch algorithm is presented in this section. FGM sandwich square plate of unit length with 

SSSS and CCCC boundary conditions is shown in Table 1 and Table 2 for softcore and hardcore 

arrangement, respectively. The sandwich plate is divided into two patches, as shown in Fig. 2, 

along the x-axis, where the dotted line represents the patch boundary. Dimensionless natural 

frequency is presented such that 2

0 0/ . /a h E  = , where 3

0 1 Kg/m =  and 0 1 GPaE = . 

The results show that the two patch results match well with the results from [2] for various 

sandwich configurations and the thickness-to-width ratio of the square plate.  

 

 

Figure 2: Illustration of a two-patch FGM sandwich plate. 

Table 1: FGM sandwich square plate first dimensionless natural frequency for softcore arrangement. 

B.C n Methodology 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

SSSS 0.5 Li et al. [2] 1.5735 1.5258 1.4846 1.4341 1.4166 1.2055 

  Two patch 1.5750 1.5289 1.4866 1.4362 1.4162 1.2048 

 1 Li et al. [2] 1.7223 1.6744 1.6305 1.5704 1.5579 1.3083 

  Two patch 1.7257 1.6838 1.6396 1.5789 1.5610 1.3076 

 5 Li et al. [2] 1.8420 1.8261 1.7896 1.7273 1.7267 1.4665 

  Two patch 1.8420 1.8416 1.8173 1.7534 1.7486 1.4660 
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B.C n Methodology 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

SSSS 0.5 Li et al. [2] 1.5735 1.5258 1.4846 1.4341 1.4166 1.2055 

  Two patch 1.5750 1.5289 1.4866 1.4362 1.4162 1.2048 

 10 Li et al. [2] 1.8402 1.8399 1.8081 1.7478 1.7481 1.4948 

  Two patch 1.8386 1.8520 1.8366 1.7755 1.7758 1.4943 

CCCC 0.5 Li et al. [2] 2.5985 2.4933 2.4182 2.3497 2.3127 2.0112 

  Two patch 2.6302 2.5313 2.4521 2.3830 2.3363 2.0285 

 1 Li et al. [2] 2.8445 2.7121 2.6191 2.5396 2.5011 2.1548 

  Two patch 2.8864 2.7772 2.6824 2.6007 2.5413 2.1765 

 5 Li et al. [2] 3.1144 2.9873 2.8560 2.7715 2.7156 2.3649 

  Two patch 3.1404 3.0788 2.9910 2.9015 2.8262 2.3924 

 10 Li et al. [2] 3.1363 3.0368 2.8995 2.8140 2.7452 2.4016 

  Two patch 3.1535 3.1150 3.0385 2.9505 2.8769 2.4299 

 

Table 2: FGM sandwich square plate first dimensionless natural frequency for hardcore arrangement. 

B.C n Methodology 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

SSSS 0.5 Li et al. [2] 1.4461 1.4861 1.5213 1.5493 1.5767 1.7113 

  Two patch 1.4442 1.4841 1.5192 1.5471 1.5745 1.7090 

 1 Li et al. [2] 1.2447 1.3018 1.3552 1.3976 1.4414 1.6511 

  Two patch 1.2432 1.3001 1.3533 1.3957 1.4393 1.6489 

 5 Li et al. [2] 0.9448 0.9810 1.0453 1.1098 1.1757 1.5299 

  Two patch 0.9460 0.9818 1.0447 1.1090 1.1740 1.5279 

 10 Li et al. [2] 0.9273 0.9408 0.9952 1.0610 1.1247 1.5033 

  Two patch 0.9284 0.9430 0.9955 1.0611 1.1231 1.5014 

CCCC 0.5 Li et al. [2] 2.5259 2.5949 2.6536 2.6983 2.7499 2.9584 

  Two patch 2.5313 2.6003 2.6592 2.7048 2.7501 2.9667 

 1 Li et al. [2] 2.1902 2.2911 2.3819 2.4511 2.5398 2.8626 

  Two patch 2.1934 2.2937 2.3843 2.4551 2.5280 2.8696 

 5 Li et al. [2] 1.66187 1.7393 1.8579 1.9672 2.1572 2.6674 

  Two patch 1.6763 1.7499 1.8609 1.9726 2.0831 2.6724 

 10 Li et al. [2] 1.6212 1.6633 1.7686 1.8808 1.9986 2.6243 

  Two patch 1.6362 1.6813 1.7760 1.8905 1.9966 2.6289 

 

With the increase in power law exponent, the natural frequency rises for softcore 

arrangement, and it decreases in the case of hardcore arrangement of FGM sandwich structure 

for both boundary conditions. The results of the two-patch sandwich plate geometry are in 

excellent agreement with the literature. Hence, the given strong coupling method is highly 

accurate in maintaining continuity between patches and hence can be used in further analysis. 

4.2 Analysis of multi-patch circular plate 

In this example, a circular FGM sandwich plate has five patches, as shown in Fig. 3. The 

patches are separated by patch boundaries represented in dotted lines, and the circle is enforced 

with CCCC boundary conditions around the outer periphery. The radius is considered as 0.5r =



Lokanath Barik, Abinash Kumar Swain. 

 9 

and / 0.2h r = . Table 3 represents the dimensionless frequencies 2

0 0/ . /r h E  = , for 

three sandwich configurations, 1-1-1, 2-1-1, and 1-2-1, with variable power law index. The 

fundamental natural frequencies of the plate with both softcore and hardcore configurations are 

noted.  

 

Figure 3: Five-patch circular sandwich plate geometry 

Table 3: First dimensionless natural frequency of clamped FGM circular sandwich plate. 

Arrangement n 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

Softcore 0.5 0.8605 0.8397 0.8183 0.7883 0.7795 0.6550 

 1 0.9420 0.9270 0.9073 0.8707 0.8664 0.7158 

 5 0.9944 1.0057 1.0019 0.9642 0.9752 0.8123 

 10 0.9891 1.0077 1.0093 0.9737 0.9889 0.8299 

Hardcore 0.5 0.7677 0.7890 0.8081 0.8237 0.8385 0.9132 

 1 0.6586 0.6887 0.7174 0.7409 0.7642 0.8798 

 5 0.5002 0.5175 0.5507 0.5864 0.6200 0.8130 

 10 0.4922 0.4969 0.5244 0.5609 0.5926 0.7984 

 

Similar trends in frequency responses are obtained for circular geometry with arbitrary patches 

for softcore and hardcore arrangement, as stated in section 4.1.  

4.3 Analysis of annular plate 

An annular FGM sandwich plate is shown in Fig. 4 with a circular cut-out of radius 0.2. The 

plate is divided into four patches separated by adjacent patch junction edges. The fundamental 

dimensionless natural frequency value 2 2

0 0 0( ) / . /ir r h E  = −  for the annular sandwich 

plate with hardcore and softcore arrangement is shown in Table 4. The plate is fully clamped at 

the outer periphery and free at the inner boundary. The effect of varying power law index on 

the natural frequency of the plate is studied with 0/ 0.2h r = . 

0.8814 0.9042 0.9207 0.9315 0.9435 0.9926 

0.7868 0.8225 0.8497 0.8683 0.8882 0.9697 

0.6109 0.6504 0.6906 0.7291 0.7628 0.9218 

0.5841 0.6257 0.6624 0.7028 0.7357 0.9112 
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Figure 4: Annular sandwich plate with four patches. 

Table 3: First dimensionless natural frequency of clamped FGM annular sandwich plate. 

Arrangement n 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

Softcore 0.5 0.7744 0.7279 0.6982 0.6890 0.6655 0.6118 

 1 0.8534 0.7908 0.7484 0.7376 0.7008 0.6350 

 5 0.9847 0.9090 0.8470 0.8325 0.7665 0.6633 

 10 1.0093 0.9360 0.8719 0.8562 0.7844 0.6679 

Hardcore 0.5 0.8814 0.9042 0.9207 0.9315 0.9435 0.9926 

 1 0.7868 0.8225 0.8497 0.8683 0.8882 0.9697 

 5 0.6109 0.6504 0.6906 0.7291 0.7628 0.9218 

 10 0.5841 0.6257 0.6624 0.7028 0.7357 0.9112 

 

5 CONCLUSIONS 

This paper presents a novel application of the strong coupling method to find the vibration 

response of the FGM sandwich structure governed by refined HSDT formulation.  The refined 

theory reduces the degrees of freedom, making the numerical analysis computationally more 

efficient. The coupling results match the literature on FGM sandwich structure with hardcore 

and softcore arrangements and clamped and supported boundary conditions. Hence, a 

promising coupling method for analyzing sandwich plates with various configurations has been 

established. The frequency results from multi-patch circular and annular plates show similar 

trends to square plate geometry. The given analysis clearly shows the effect of cutouts and 

geometry changes on the natural frequency of plates. Hence, it serves as a benchmark for the 

efficient design and production of FGM sandwich plates. The following work can be further 

extended to investigate different types of plates and shells with cutouts. More complex 

geometrical structures can also be analyzed for thermal buckling and vibration responses. 
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