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Summary. The multiresolution finite wavelet domain method has been meticulously studied in 

wave propagation simulations. The multiresolution procedure always starts with the coarse 

solution, and then finer solutions can be superimposed on the coarse solution, until convergence 

is achieved. Based on remarkable observations on the multiple resolution components of the 

method, a residual-based convergence indicator that reveals convergence at the coarse solution 

is developed. This convergence metric is rapidly applicable and straightforward and can also 

divulge the spatial and temporal ranges/domains that the already obtained solution needs to be 

enhanced. In that way, an automatic adaptive refinement technique is proposed for the local 

enrichment of the solution, only in the specific grid points and time-steps that it is needed. A 

numerical case study regarding wave propagation in an inhomogeneous rod manifests the 

effectiveness and accuracy of the proposed automatic refinement methodology, as also the 

performance of the suggested convergence indicator. 
 

1 INTRODUCTION 

In many domains of physical research and engineering, the combination of wavelets and 

computer techniques seems to be incredibly effective and potent. Wavelet functions [1], [2] are 

attractive as basis functions in numerical methods [3], [4] because of their exceptional 

mathematical features. As such, numerous multiresolution wavelet-based techniques have been 

developed in recent years. A wavelet multiresolution interpolation Galerkin method (WMIGM) 

for nonlinear boundary value problems (BVPs) was constructed by Liu et al. [5]. Their approach 

showed excellent accuracy and stability results. Wang et al. [6] developed a multiresolution 

wavelet-based method for bending problems of complex-shaped plate structures. Their method 

outperformed conventional finite element (FE) models in terms of accuracy and efficiency. 

Also, Harten introduced a multiresolution approach that can hierarchically refine the solution 

of hyperbolic conservation laws [7]. Using second-generation wavelets, Azdoud and Ghosh [8] 

introduced an adaptive wavelet-enriched hierarchical finite element method. Their method was 

employed to solve static analyses of microstructures with polycrystals. With the use of phase-
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field modeling, Cheng, Tu, and Ghosh [9] extended this technique to simulate the propagation 

of cracks in polycrystalline microstructures and found excellent convergence characteristics. 

For the effective study of shock waves, Gusto and Plewa [10] suggested a hybrid adaptive 

multiresolution method. Kaiser et al. [11] demonstrated excellent outcomes by proposing an 

adaptive wavelet-based approach for the multiscale study of 1D static interface and interphase 

issues. Asymmetrical wavelets were used by Yang et al. [12] to create high-order adaptive 

multiresolution collocation techniques for the solution of hyperbolic conservation laws 

involving upwind schemes. Their technique proved to be highly effective and precise when 

analyzing 1D shock turbulence interaction problems and interacting blast wave problems. 

Most of the previously mentioned works are focused on the domain of computational fluid 

dynamics (CFD). Furthermore, all of the works previously mentioned specify the refinement 

domain of each problem using arbitrary threshold parameters. This fact diminishes the 

robustness and usefulness of adaptive approaches. In this work, a robust and straight-forward 

convergence indicator (CI) is proposed and used to estimate the refinement domain. This CI is 

based on the intrinsic characteristics of the multiresolution finite wavelet domain method (MR-

FWD) that has been recently developed and utilized in transient dynamic simulations of rods, 

beams and 2D solids[13]–[15]. By employing the proposed convergence indicator, an automatic 

adaptive refinement methodology is presented for the efficient wave propagation simulation in 

rod structures, manifesting remarkable accuracy and computational gains. 

2 THEORETICAL BACKGROUND 

2.1 The multiresolution finite wavelet domain method 

In the present section, the formulation of the MR-FWD method and the multiresolution 

hierarchical procedure are concisely presented. For more information, the reader can refer to 

[14], [16]. In Figure 1, a beam structure that is divided into 9 segments, using a uniform grid 

of 10 nodes, is portrayed. Additional 2L-2 grid points, where L is the order of Daubechies (DB) 

scaling function (SF) and wavelet function (WF), are introduced to the left side of the physical 

domain, forming the wavelet domain. The generalized displacement approximation in the 

segment between 2 grid points for R resolutions is expressed as: 
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where 0ˆ
Cnu  are the coarse coefficients at resolution 0, ˆS

Fnu  are the fine coefficients at resolution 

S, φ(x) is the scaling function and ψ(x) is the wavelet function. In the Appendix, the 

mathematical properties of Daubechies SFs and WFs are briefly mentioned. A normalized local 

coordinate system is associated with each element. The local dimensionless coordinate variable 

ξ is given as 
1

( ) / ( ) ( ) /
+

= − − = −
i i i i e

x x x x x lx  so, in Eq. (1) the spatial variables x and ξ are limited to 

the ranges 0 ex l   and 0 1  , respectively, where le is the elemental length. It is clear from 

Figure 1 that the MR procedure starts with the coarse solution C0 that only employs the SFs, 

and then that solution is incrementally enriched by the fine solutions of each resolution that 

utilize the WFs. The schematic representation of the 1D MR analysis (Figure 1) is analytically 

expressed in Eq. (1) for the generalized displacement field u. For simplicity, the MR process 

up to resolution 1 is presented in Eqs. (2) and (3). 
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Figure 1: Representation of the 1D MR synthesis process and discretization style of the physical domain using 

nine DB3 wavelet-based “elements”. The physical and wavelet domain are depicted. 

Single-Resolution - Resolution 0 (C0). The C0 solution is obtained by utilizing only the DB 

SF, φ(x), and provides the initial approximation for the MR process. The equation of motion is: 

  
0 0ˆ ˆ[ ] [ ]+ =CC CCM K&&

C CC CCu u F   (2) 

where ˆ
CCu  are the generalized coarse coefficients of the SR approximation, [ ]CCK  and [ ]CCM  are 

the coarse resolution stiffness and mass matrices, and CF  is the coarse resolution load vector. 

MR - Resolution 1 (C1). Pursuing the MR reconstruction process, the fine approximation at 

resolution 0 (F0) needs to be calculated and then added to the coarse solution at resolution 0 

(C0) so as to acquire the C1 solution. The MR solution system is: 
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where ˆ
Fu  are the generalized fine coefficients and ˆ

Cu  are the generalized coarse coefficients 

of the coupled equations of motion for resolution 1. It should be highlighted that ˆ
Cu  is not 

equal to ˆ
CCu  because of the stiffness coupling terms, [ ]CFK  and [ ]FCK , once the first derivatives 

of φ(x) and ψ(x) are not cross-orthogonal. Also, [ ]FFK  and [ ]FFM  are the fine resolution stiffness 

and mass matrices, respectively, and FF  is the fine resolution load vector. 

Hierarchical procedure – Explicit integration. Following the MR reconstruction approach, 

the first step of the process is always the single-resolution coarse component. The MR 

procedure will be described for resolution 1. The coarse component at resolution 0, 0ˆ
CCu , is 

already calculated. The component 0ˆ
Cu  of resolution 0, is set as 

0 00ˆ ˆ ˆ=  +C CCu u u , where 
0ˆu  is 

termed as correction component. In that way, Eq. (3) can be written as: 
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Using central differences, the three forenamed components at resolution 0 are calculated as: 
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where 
2

0 1/a t=   and Δt is the time step for the explicit integration scheme. The summation of 

the three forenamed components at resolution 0, forms the coarse approximation of the next 

resolution (resolution 1), as: 

 
01 0 0ˆ ˆ ˆ ˆ= + +CC CC Fu u u u   (8) 

3 CONVERGENCE INDICATOR & ADAPTIVE REFINEMENT 

3.1 Residual-based Convergence Indicator 

In this section it is shown that the maximum ratio of the uncoupled fine solution to the coarse 

one basically constitutes a convergence indicator (CI) that reveals convergence at resolution 1. 

The uncoupled fine solution, ˆunc

Fu , is determined as: 

   
1

ˆ
−

= FFK
unc

Fu R   (9) 

where the term 
0ˆ[ ]= − FCK CF CF uR  is called the Residual vector. The uncoupled fine solution is 

basically the fine solution that can be calculated by ignoring the correction component. Also, 

the inertial terms have been ignored since the dynamic characteristics of the solution are 

provided by the coarse component. In this way, the computation of the uncoupled fine solution 

is rapid since time integration is not needed. The refinement region (Ω) for resolution 1 can be 

estimated through the proposed indicator for resolution 0: 
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where ε is a critical threshold value that depends on the order of Daubechies wavelet family 

and is estimated from convergence studies, as shown hereafter. Convergence studies using the 

DB3 SFs/WFs for the wavelet-based elements were carried out for 4 rods with different Elastic 

Modulus. All the other material and geometric characteristics are exactly the same, namely, the 

rod’s length is l=4m and cross section A=10-4m2, Poisson’s ratio v=0.3, density ρ=2700 kg/m3, 

clamped at its left side and excited at its center with a 5-cycle tone burst with 25 kHz central 
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frequency. In Figure 2a the values of the CIs for each material case and different discretizations 

are shown. As anticipated, the lines differ from each other since the different material changes 

the dynamic behavior and so, different number of nodes leads to different ratios of uncoupled 

fine to coarse solution. Interestingly, in the plot of RMS errors vs the CIs (Figure 2b), all the 

lines coincide. This is very important since it seems that the proposed convergence indices are 

material-invariant and robust. Also, the behavior of those indicators is monotonous, and 

notably, the CI values are monotonically decreasing with the decrease of the RMS error. This 

means that a threshold value can be selected for a given RMS error where the analysis results 

are considered as accurate. The threshold value for this study will be set as ε=0.01 for the DB3 

elements. It is highlighted that the material-invariant behavior and monotonicity of the proposed 

CI has been checked in numerous cases that are not presented for the sake of brevity. 

a) 

 

b) 

 
Figure 2: Convergence indicator values (a) versus no. of nodes, and (b) versus RMS error, for 4 different 

material cases. 

For the demonstration of the uncoupled fine solution and the respective convergence index, the 

following case study is shown: an inhomogeneous rod with length l=4m and cross section 

A=10-4m2 is modeled. The rod consists of two different materials, aluminum, and damaged 

aluminum, and their mechanical properties are shown in Table 1. The damage or compliant 

material spans from 0m≤x≤2m (Figure 3). The rod is clamped at the left edge, and it is axially 

excited at its center (x=2m) by a 5-cycle tone burst with 25 kHz central frequency. The analysis 

duration is 0.4 ms and the model uses 120 DB6 wavelet-based elements. 

 
Figure 3: Geometric representation of an inhomogeneous rod structure. 

It is shown that the coarse solution exhibits different wavenumbers and group velocities at 

its left and right half when it comes to the spatial axis (Figure 4a). This is expected due to the 

different material. Specifically, the left half (0m≤x≤2m) reveals higher wavenumbers and lower 

4m

2m

70 GPa30 GPa

A=10-4m2

25 kHz 
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group velocity than the right half because of the more compliant material. The fine uncoupled 

solution (Figure 4b) qualitatively acts like the fine solution by basically isolating the damage 

span. Due to that filter behavior, the proposed CI (Figure 4c) suggests that the part of the 

solution that needs to be enriched is the wave packet that travels in the damaged region while 

accurately specifying its limits in both space and time.  

a) 

 

b) 

 

c) 

 
Figure 4: Coarse solution (a), uncoupled fine solution (b) and the respective convergence indicator (c) that 

designates the refinement domain. 

3.2 Adaptive Refinement 

As already mentioned, the C0 solution is always calculated for the whole spatial and temporal 

domain. After obtaining the C0 solution and calculating the indicator that specifies the domain 

that needs refinement, the resolution 1 components can be computed only where needed. The 

components using adaptive refinement are expressed as:  
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where the superscript r denotes the refinement domain. That means that those vectors and 

matrices are only calculated in a much smaller domain than the initial one, reducing the 

system’s size. The refined prediction at resolution 1 is: 

 
0 0, ,1, 0ˆ ˆ ˆ ˆ= + +r r

CC

r

CC Fu u u u   (13) 

4 NUMERICAL CASE STUDY 

In this subsection, the automatic adaptive refinement process is presented in a case study of 

wave propagation in an inhomogeneous rod structure. In Figure 5a, an inhomogeneous rod 

with length l=7m and cross section A=10-4m2  is illustrated, that is comprised of two different 

materials, shown in Table 1. The light grey is the Aluminum part while the dark grey is the 

Damaged Aluminum part. The rod is clamped at its left side and is axially excited at its center 

by a 5-cycle tone burst with 25 kHz central frequency. 
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Table 1: Material properties. 

 E (GPa) v ρ (kg/m3) 

Aluminum 70 0.3 2700 

Damaged Aluminum 30 0.3 2700 

In Figure 5b,c, the spatiotemporal response of the coarse and uncoupled fine solution is 

depicted, respectivelly, and in Figure 5d the adaptive refinement domain that is automatically 

derived from the forenamed CI is displayed. Its demonstrated that the solution needs enrichment 

inside the damaged area, and also on the transmitted wave at the right of the damage span. 

a) 

 
b) 

 

c) 

 

d) 

 
Figure 5: (a) Illustration of the inhomogeneous rod, (b) spatiotemporal plot of the coarse solution, (c) 

spatiotemporal plot of the uncoupled fine solution and (d) visualization of the adaptive refinement domain. 

It is observed in Figure 6 that the coarse solution exhibits substantial error compared to the 

full domain MR solution. The full domain MR solution is the classic C1 solution that is 

calculated in the whole spatiotemporal domain. The targeted MR solution is calculated at two 

different spans of the rod, as shown by the refinement regions in Figure 6, and is accurate as it 

coincides with the full domain solution. It should be highlighted that this procedure is fully 

automated since the CI is rapidly computed and guides the adaptive refinement technique. 

Refinement Domain
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Figure 6: Axial displacements for each solution at t=0.67 ms. 

Concerning the computational gains, the adaptive MR refinement solution is expected to be 

faster than the full domain MR solution since the Eqs. (11), (12) are solved for fewer time steps 

and have smaller algebraic size. This is of course problem-dependent and is affected by the size 

of the refinement domain in space and time. For the already presented numerical example, the 

adaptive MR refinement is about 10 times faster than the full domain MR refinement, as 

illustrated in Figure 7a. As already mentioned, the coarse solution (C0) is always calculated in 

the whole spatiotemporal domain, as provided in Eq. (5). That is why the blue coloured bar that 

indicates the solver duration of resolution 0 solution (C0) is the same for the full domain and 

the adaptive MR solution. However, the calculation of Eqs. (6), (7) at the whole spatiotemporal 

domain for the full domain MR solution is 10 times slower than the calculation of Eqs. (11), 

(12) for the adaptive MR solution, as suggested by the red coloured bars in Figure 7a. The 

overall adaptive MR solution is 2.3 times faster than the full domain MR solution for this 

specific case study. In Figure 7b, the normalized solver durations of different converged FE 

and wavelet-based models are compared. The proposed adaptive MR solution is about 15 times 

faster than the single-resolution (SR) solution and about 55 and 460 times faster than 3-node 

and 2-node FE models, respectivelly. Finally, it should be mentioned that the RAM 

requirements are also crucially decreased using the proposed adaptive methodology. 

a) 

 

b) 

 
Figure 7: Normalized solver durations of (a) full domain vs adaptive MR solution and (b) different finite 

element and wavelet-based models. 

Coarse Sol.                Full domain MR                   Adaptive MR
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5 CONCLUSIONS 

In this work, an automatic adaptive refinement technique is introduced, based on the inherent 

convergence indicators provided by the MR-FWD method. The robustness of the proposed 

residual-based convergence indicator is shown, and its great performance is validated towards 

the numerical simulation of wave propagation in an inhomogeneous rod. The convergence 

indicator successfully specifies the domain that the initial solution needs to be enhanced, 

leading to a very accurate and efficient automatic methodology. The computational gains of the 

presented methodology in terms of CPU times are also quantified, manifesting up to 460 times 

faster simulations compared to traditional finite element models.  
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APPENDIX 

Mathematical properties of Daubechies wavelets 

The Daubechies wavelet family consists of compactly supported scaling functions φ(x) and 

wavelet functions ψ(x) [17]. Their basic mathematical properties are: 

Compact Support. Both SFs and WFs are bounded within an interval, which spans over a 

compact support domain of grid points [0, 2L − 1], where L is the order of the SF/WF. Hereafter, 

DB SFs/WFs of order L are termed as DBL. 

Orthogonality. The integer translates of the SFs/WFs are orthogonal to each other, so they 

form an orthogonal basis in the Lebesgue space, 

 ( ) ( ) , ( ) ( ) , ( ) ( ) 0

  

− − −

− − = − − = − − =  i ij jx i x j dx x i x j dx x i x j           (14) 

Vanishing moments. The number of vanishing moments signifies the maximum degree of 

polynomial that can be exactly approximated by SF/WF. DB SFs/WFs of order L have L 

vanishing moments and can exactly represent polynomials up to L-1 order. 

Two scale relation/ Dilation property. The dilation property constitutes the basis for the 

MR analysis. It is provided by the dilation equations, 
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where hk is the set of 2L filter coefficients, and j is the resolution or scale. 


