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Summary. Several strategies to solve the 5-equation model of Kapila relying on instanta-
neous pressure relaxations have been proposed in the literature. These methods rely on the
introduction of an interfacial pressure which does not exist in the 5-equation model. In this pa-
per, a detailed analysis of the pressure relaxation process is provided with emphasis on the role
of interfacial pressure and on how the process differs from the pressure-temperature relaxation
process. Accurate relaxation methods are developed and the impact of the interfacial pressure
on the numerical robustness but also on the convergence of the method towards weak solutions is
investigated. It is shown to be a key parameter of the pressure relaxation process while playing
no role in the instantaneous pressure-temperature relaxation. A set of challenging numerical
test cases are presented and used to compare the different relaxation processes.

1 INTRODUCTION

Two-phase flows appear in many industrial applications or natural phenomena, and their
understanding relies on accurate numerical simulations. In the context of separated interface
flows, several modelling strategies have been proposed; we focus on the class of two-fluid models.
Among these models, the one proposed by Baer and Nunziato [1] in the context of deflagration-
to-detonation transition in granular explosives has been extended to liquid-gas flows by Saurel
and Abgrall [2]. It allows the two phases to be fully out-of-equilibrium as each phase has its own
pressure, temperature and velocity. Assuming some of these quantities remain at equilibrium
during the flow allows one to derive a hierarchy of reduced order models ranging from the
original 7-equation model to a 4-equation model [3, 4, 5]. The 5-equation model derived by
Kapila [3] belongs to this hierarchy. Many numerical schemes have been developed for this
model [6, 7, 8, 9] with several relying on the instantaneous pressure relaxation approach [7,
8, 10]. A similar strategy relying on an instantaneous pressure-temperature relaxation allows
the numerical simulation of the 4-equation model. However, the mathematical structure of
both models differs: while the 4-equation model is conservative, the 5-equation model involves
a non-conservative product and does not posses a complete set of jump conditions. Moreover,
convergence to weak solutions is only established for the pressure-temperature relaxation scheme
and the pressure relaxation approach suffers from theoretical difficulties which are still under
investigation. In this paper, we propose a detailed analysis and comparison of the instantaneous
relaxation processes. We provide theoretical insights concerning pressure relaxation parameters
as well as accurate methods, which are then used to investigate the effect of these parameters
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on several challenging numerical test cases. The choice of these parameters is shown to be
paramount to ensure the robustness of the scheme. The pressure relaxation scheme is then
compared to the pressure-temperature relaxation scheme on a shock-droplet interaction case.
The outline of this paper is the following. In Section 2, we present the 5-equation model and
recall some of its properties, in Section 3, the numerical strategy relying on an instantaneous
relaxations of the 6-equation model is presented, while the instantaneous relaxation processes
itself are described in detail and analysed in Section 4 with emphasis given on the difference
between pressure relaxation and pressure-temperature relaxation. Numerical results comparing
the relaxation processes and illustrating the impact of pressure relaxation parameters are given
in Section 5.

2 PRESENTATION OF THE MODEL

We consider is the five-equation model of Kapila [3]. It is derived through a Chapman-Enskog-
like expansion of the 7-equation model of Baer and Nunziato [1] in the limit of instantaneous
relaxation towards equilibrium of the pressures and velocities. The model writes as follows:

∂

∂t
α1 + u · ∇α1 + α1α2

ρ1c
2
1 − ρ2c

2
2

α2ρ1c21 + α1ρ2c22
∇ · u = 0, (1a)

∂

∂t
(α1ρ1) +∇ · (α1ρ1u) = 0, (1b)

∂

∂t
(α2ρ2) +∇ · (α2ρ2u) = 0, (1c)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = 0, (1d)

∂

∂t
(ρE) +∇ · ((ρE + p)u) = 0. (1e)

We use the following notations for k = 1, 2, αk is the volume fraction of phase k, the volume
fractions sum up to unity. The phasic densities are denoted ρk, the mixture density, ρ = α1ρ1+
α2ρ2 and the phasic sound velocity, ck. The mixture velocity is denoted u and E = e + 1

2 |u|
2

represents the specific total energy with e the specific internal energy of the mixture. The two
phases are in pressure equilibrium at all times and their common pressure p is found by solving

Find p such that Y1e
EOS
1 (ρ1, p) + Y2e

EOS
2 (ρ2, p) = E − 1

2 |u|
2, (2)

here we have introduced the notation Yk = αkρk/ρ for the mass fraction of phase k as well as
the energy equations of state. Although the model assumes pressure equilibrium, it does not
assume the phases to be in thermal equilibrium, as each phase has its own temperature:

Tk = TEOS
k (ρk, p). (3)

For the numerical results of Section 5, we will use a stiffened gas equation of state for each phase
such that

pk = (γk − 1)ρkek − γkp∞,k, Tk =
pk+p∞,k

(γk−1)ρkcv,k
, (4)

where γk > 1, p∞,k and cv,k > 0 are the EOS parameters of the kth phase.
The model is unconditionally hyperbolic. In one dimension, its Jacobian matrix has 5 real
eigenvalues λ = u− cw, λ = u and λ = u+ cw where cw is the mixture sound velocity, also called
Wood’s sound velocity [11] and is defined through

1

ρc2w
=

α1

ρ1c21
+

α2

ρ2c22
. (5)

2
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The material wave λ = u has multiplicity 3 and is associated to a linearly degenerate character-
istic field while the acoustic waves λ = u± cw are simple and genuinely non-linear.
The model also admits a supplementary conservation law for the mixture entropy

∂

∂t
(ρs) +∇ · (ρsu) = 0, ρs = α1ρ1s1 + α2ρ2s2. (6)

However, the non-conservative nature of the volume fraction equation (1a) does not allow
for shock relations to be uniquely defined. Although there are some systems for which non-
conservative products can be uniquely defined and appropriate numerical schemes constructed
[12, 13], it is however not the case for the model under consideration. This leads to both the-
oretical and numerical difficulties when dealing with weak solutions [14, 15, 16, 17]. One way
to define jump conditions for a non-conservative system is through travelling wave solutions: a
parabolic diffusion term is added to the equation resulting in a smooth travelling wave profile
connecting a left state to a right state. In the limit of a vanishing diffusion a shock profile is
obtained. For conservative systems, the resulting shock profile satisfies the well-known Rankine-
Hugoniot conditions; for non-conservative systems however, the resulting shock profile depends
on the diffusion matrix. A consequence of this fact is that different numerical schemes can
converge towards different numerical solutions as each scheme has its own numerical diffusion
matrix [17, 18]. Therefore, the key issues for such models is to identify the parameters of the
numerical scheme which can affect the structure of the numerical diffusion and to evaluate the
impact these parameters have on weak solutions.

3 NUMERICAL STRATEGY

The numerical strategy that we follow originates from the works of Saurel et al. [7] and
is inspired from the theory of relaxation schemes [19, 20, 21]. We consider a 6-equation, 2-
pressure model endowed with stiff pressure relaxation terms. A Chapman-Enskog expansion
shows that in the limit of infinitely fast pressure relaxation, we recover the 5-equation model
[3]. The numerical scheme we consider consists in a two-step procedure. Time stepping is
done by first solving the 6-equation model without any relaxation source terms — which will
be referred to as homogeneous 6-equation model in the following — and then, relaxing the
solution until pressure equilibrium is reached (ie instantaneous relaxation, see Section 4). The
original approach considers a 6-equation model with equations for the internal energies, an
energy correction procedure is then necessary to ensure the conservation of the total energy
[7, 9]. However, we have observed that these corrections can compromise the robustness of the
numerical scheme as they do not guarantee the positivity of the temperatures, therefore it is
preferable to use total energy equations following [8]. The 6-equation model that we consider
writes as follows,

∂

∂t
α1 + u · ∇α1 =

p1 − p2
ε

, (7a)

∂

∂t
(α1ρ1) +∇ · (α1ρ1u) = 0, (7b)

∂

∂t
(α2ρ2) +∇ · (α2ρ2u) = 0, (7c)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = 0, (7d)

∂

∂t
(α1ρ1E1) +∇ · (α1(ρ1E1 + p1)u)− u · (Y2∇(α1p1)− Y1∇(α2p2)) = −pI

p1 − p2
ε

, (7e)

∂

∂t
(α2ρ2E2) +∇ · (α2(ρ2E2 + p2)u) + u · (Y2∇(α1p1)− Y1∇(α2p2)) = +pI

p1 − p2
ε

, (7f)
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and the homogeneous 6-equation model is obtained by discarding the right-hand side source
terms. The notations previously introduced are still valid. New notations correspond to the
phasic total energy Ek = 1

2 |u|
2+ ek (with ek the phasic internal energy), phasic pressure pk, the

mixture pressure p = α1p1 + α2p2 and the interfacial pressure pI which will be discussed later
on. As the pressure equilibrium assumption has been lifted in this model, each phase has its
own Gibbs relation and we have

pk = pEOS
k (ρk, ek), Tk = TEOS

k (ρk, ek). (8)

The model is unconditionally hyperbolic. In one dimension its Jacobian matrix admits 6 real
eigenvalues λ = u− cf , λ = u and λ = u+ cf where cf is the mixture sound velocity, sometimes
referred to as frozen sound speed, and is given by

ρc2f = α1ρ1c
2
1 + α2ρ2c

2
2. (9)

The material wave λ = u has multiplicity 4 and is associated to a linearly degenerate charac-
teristic field while the acoustic waves λ = u ± cf are simple and genuinely non-linear. Since
the material wave is linearly degenerate, the volume fraction equation (7a) now has a non-
conservative product which is well defined, the phasic energy equations (7e,7f) however have
non-conservative products which are not uniquely defined.

The time discretization strategy is as follows. We denote by H∆t the time step operator of
the homogeneous part of (7), and R the instantaneous pressure relaxation operator. The vector
of unknown q is then updated in time according to the following formula

qn+1 = RH∆tq
n, (10)

which is reminiscent of the Lie-Trotter splitting but is in fact a projection scheme. Indeed, in
the limit ε → 0, the relaxation operator does not depend on the time-step and becomes a local
non-linear projection on the pressure equilibrium manifold. Formula (10) results in a first-order
in time scheme for the 5-equation model (1). Higher order accuracy can be achieved using a SSP
Runge-Kutta method [22] with relaxations for each stage [23]. Space discretization is achieved
through a finite-volume method, a HLLC Riemann solver is used, approximate jump conditions
are provided to close the intermediate states and the non-conservative term is treated similarly
as in [7, 24].

When the pressure relaxation operator R is replaced by an instantaneous pressure and tem-
perature relaxation operator, formula (10) yields a first-order in time scheme for the 4-equation
model [25]. The 4-equation model, similar to the two-species Euler equations, is fully conserva-
tive and obtained by discarding the volume fraction equation (1a) from system (1) and assuming
pressure and temperature equilibrium for its thermodynamic closure. The mathematical prop-
erties of the 5-equation model and the 4-equation concerning weak solutions are very different
as only the 4-equation model has a complete set of jump conditions; this can be linked to a
difference in the structure of the corresponding relaxation operators. The following section is
dedicated to the instantaneous relaxation processes with emphasis on the difference between the
pressure relaxation and the pressure-temperature relaxation.

4 INSTANTANEOUS RELAXATION PROCESSES

4.1 Some theoretical insights about the role of the interfacial pressure

We now discuss the pressure relaxation source term corresponding to the right-hand side
of (7). The source term on the volume fraction equations drives the system towards pressure

4
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equilibrium. However, the volume fraction source term alone is not compatible with the entropy
inequality. The energy equations’ source terms restore the thermodynamic compatibility of the
relaxation process; they account for the energy exchanges between the phases resulting from the
volume changes that take place during this process. These exchanges are driven by an interfa-
cial pressure pI . This pressure is non-existing in the 5-equation model, and should therefore be
considered to be a numerical parameter of the relaxation scheme, it is usually chosen such that
min(p1, p2) ≤ pI ≤ max(p1, p2).

Several choices for the interfacial pressure have been used in the literature, we will now clarify
the impact of this choice in the limit of an instantaneous pressure relaxation. In the following,
for a given quantity X , we will denote X (0) and X ⋆ the value of X before and after the relaxation
process respectively. Since several quantities remain unchanged by the relaxation process, the
number of equations can be reduced to two. They write

dα1

dt
=

p1 − p2
ε

, (11a)

de1
dt

= − pI
(α1ρ1)(0)

p1 − p2
ε

. (11b)

Knowing α1 and e1 we have α2 = 1 − α1, ρk = (αkρk)
(0)/αk and e2 = (e − Y

(0)
1 e1)/Y

(0)
2 thus

the thermodynamic state of each phase is determined. The velocity field is unaffected by the
pressure relaxation process.

In the limit of instantaneous relaxation (ε → 0), eq. (11a) gives p1 = p2, however the system
is not endowed with a sufficient amount of constraints for this equation to fully determine the
relaxed state. Instead, it defines a one-dimensional manifold of equilibrium states which has an
implicit parametrization α⋆ 7→ e⋆1 defined by

pEOS
1

(
(α1ρ1)(0)

α⋆
1

, e⋆1

)
− pEOS

2

(
(α2ρ2)(0)

1−α⋆
1

,
e(0)−Y

(0)
1 e⋆1

Y
(0)
2

)
= 0. (12)

The correct relaxed state is then found by considering eq. (11b), in the limit ε → 0 it becomes

de1
dα1

= − pI

(α1ρ1)(0)
, (13)

which defines a thermodynamic path starting from (α
(0)
1 , e

(0)
1 ) and entirely determined by the in-

terfacial pressure. The final state (α⋆
1, e

⋆
1) is then obtained as the intersection of the equilibrium

manifold (12) and the thermodynamic path (13). One of the consequences of this dependence
of the equilibrium state with respect to the choice of interfacial pressure, is that a change of
interfacial pressure may modify the numerical diffusion 1. In turn, this may lead to a modifica-
tion in the numerical volume fraction jump condition that is obtained with the scheme (recall
that there is no clear mathematical definition for the volume fraction jump condition for the
5-equation model).

If the numerical scheme is employed with time-step ∆t, it may seem reasonable to consider

that in smooth regions p
(0)
1 − p

(0)
2 = O(∆t) since at the start of the hyperbolic step, the state

is at pressure equilibrium. One would then expect that the choice of interfacial pressure plays
little to no role. However, for liquid-gas flows, the pressure law of the liquid is extremely stiff
when compared to the pressure law of the gas and substantial pressure differences can still occur.
This fact will be illustrated in Section 5.1.

1See for instance [21] for a link between Chapman-Enskog expansion and numerical diffusion of the time
discretization – note however that our scheme does not fit within the framework presented in this reference

5
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We now discuss the pressure-temperature relaxation process through which we obtain a nu-
merical scheme for the 4-equation model instead of the 5-equation model. When instantaneous
temperature relaxation is added, the equilibrium state does not depend on the choice of inter-
facial pressure. This is because we get the additional constraint

TEOS
1

(
(α1ρ1)(0)

α⋆
1

, e⋆1

)
− TEOS

2

(
(α2ρ2)(0)

1−α⋆
1

,
e(0)−Y

(0)
1 e⋆1

Y
(0)
2

)
= 0, (14)

which, together with eq. (12), fully determines the equilibrium state. The physical interpretation
is that interfacial pressure determines the energy exchanges due to the work of volume changes,
but now heat exchanges redistribute the energy in the system. Therefore in the case of pressure-
temperature relaxation, different interfacial pressures lead to different thermodynamic paths
but the equilibrium state is the same whereas for pressure relaxation only, the equilibrium state
depends on the thermodynamic path. This is coherent with the fact that the 4-equation model
is conservative and the Rankine-Hugoniot jump conditions hold. Moreover the convergence for
weak solutions of the relaxation scheme can be established following the framework presented
in [20, 21], this is however not the case for the pressure relaxation scheme.

4.2 Relaxation techniques

Most methods for the instantaneous pressure relaxation process proposed in the literature
rely on an approximate computation of the equilibrium state [7, 26]. For these methods there
is no guarantee of entropy consistency, and in extreme cases some of them can violate the
thermodynamic constraints and lead to negative temperatures. Moreover, these methods rely
on the assumption that the initial state is close to equilibrium, however in practice large initial
pressure differences can occur — mainly because of the stiffness of the equation of state of the
liquid — leading to numerical errors which can affect the physical solutions obtained.

In order to properly study the impact of the choice of interfacial pressure on the numerical
scheme we require an accurate and robust resolution of the relaxation process which preserves
all thermodynamic constraints. Our strategy consists in identifying interfacial pressures which
allow for an exact parametrization of the thermodynamic path (13). Writing the phasic entropy
equations, we get

αkρkTk
Dsk
Dt

= (−1)k(pI − pk)
p1 − p2

ε
. (15)

Therefore if the interfacial pressure is taken as the pressure of one of the phases, pI = pk for
either k = 1 or k = 2, we get that the thermodynamic path coincides with the isentrope of phase
k and all the entropy production is concentrated in the other phase. This additional constraint
allows for a direct computation of the corresponding equilibrium state as it allows to reduce eq.
(12) to an equation with a single unknown.

Another choice for the interfacial pressure that is of particular interest is the mixture pressure
pI = p. In the case where both equations of state are stiffened gas laws (4), this choice results
in an analytical expression of the thermodynamic path. Indeed, ODE (13) then writes

de1
dα1

= A+Bα1+Ce1 with A =
γ2p∞,2−(γ2−1)(ρe)(0)

(α1ρ1)
(0) , B =

γ1p∞,1−γ2p∞,2

(α1ρ1)
(0) , C = γ2−γ1, (16)

and has analytical solution

e1 = e1(α1) = −B +AC

C2
− B

C
α1 +

(
e
(0)
1 +

B

C
α
(0)
1 +

B +AC

C2

)
exp

[
C
(
α1 − α

(0)
1

)]
. (17)

Similarly as before, using this expression together with eq. (12) leads to a closed equation for
α⋆
1 which can be solved using a Newton method.
Using the analytical expressions of the thermodynamic paths ensures entropy consistency,

preservation of all thermodynamic constraints and allows for very accurate computations of the

6
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Figure 1: Two pressure relaxation processes in the (α1, e1) plane for two different interfacial
pressures, exact (full lines) and linearised (dotted lines) paths.

equilibrium state. Moreover, the proposed relaxation procedure induces almost no additional
cost as the method converges rapidly and since the relaxation is a local process, it can easily
be parallelized. We end this section by illustrating two relaxation processes which are shown in
the (α1, e1) plane in Figure 1, the interfacial pressure considered are

pI = p = α1p1 + α2p2, pI = Z2p1+Z1p2
Z1+Z2

with Zk = ρkck. (18)

For the first case, we used the analytical expression (17); for the second, we considered an ex-
pression which is often proposed in the literature and used an embedded Runge-Kutta method
to solve ODE (13). The thermodynamic paths, plotted for these two different cases (full blue
and green lines), intersect the equilibrium curve (red line) at the equilibrium state. Dotted lines
correspond to approximate methods which linearise the thermodynamic path [7, 8]. The purple
curve is the method used in [7, 10], it relies on an implicit linearisation of the thermodynamic
path making it independent of the choice of interfacial pressure. The shaded area corresponds to
volume fractions for which the equilibrium state (vertical projection on the equilibrium curve)
is not admissible (negative temperature for one of the phases). The exact thermodynamic paths
always intersect the equilibrium curve in the admissible region thus ensuring positivity of the
equilibrium state; among the approximate methods described previously, only the implicit ap-
proximate method has this property. In Figure 1b, the initial state is located in the shaded
area and gives an example of positivity loss for one of the approximate methods (see the dotted
green line). This case also shows the strong dependence of the relaxed state on the choice of
interfacial pressure in the instantaneous pressure relaxation process.

For the pressure-temperature relaxation process, eqs. (12) and (14) form a closed system
and the equilibrium state can be computed directly with a root finding algorithm such as the
Newton-Raphson method. Moreover in the case where both equations of state are stiffened gas
laws analytical expression can be derived as the equilibrium pressure can be expressed as a root
of a quadratic equation [8].

5 NUMERICAL RESULTS

We now present a set of three numerical test-cases which have been chosen to illustrate
the impact of the relaxation process on different aspects of the numerical scheme, namely its
robustness (double rarefaction case, Sec. 5.1), the convergence towards weak solutions (extreme
epoxy-spinel shock, Sec. 5.2) and the ability of the proposed strategy to capture properly the
physics of high-speed flows (early stages of a shock-droplet interaction case, Sec. 5.3).

7
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Figure 2: Gas density (left) and temperature (right) for the double rarefaction Riemann problem.

5.1 Double rarefaction in a liquid dominated mixture

We consider the double rarefaction Riemann problem in quasi-pure liquid proposed in [27].
The gas has phase index 1; the stiffened gas EOS parameters used are γ1 = 1.4, p∞,1 = 0GPa,
cv,1 = 1040 J kg−1K−1 and γ2 = 4.4, p∞,2 = 6 × 108GPa, cv,2 = 1816 J kg−1K−1. The initial
condition is made up by two states with identical thermodynamic conditions ρ1 = 0.63 kgm−3,
ρ2 = 1150 kgm−3 and α1 = 1 × 10−2 and p = 1 × 105 Pa, and with opposing velocities uL =
−2m s−1, uR = 2ms−1; the states are separated at x = 0.5m. Computations are done using the
first order method on a fine mesh (4000 cells) at CFL 0.4, the final time is tf = 3.2ms. Interfacial
pressures considered here are the mixture pressure pI = p and the gas pressure pI = p1. Because
the liquid volume fraction is close to one, the results with pI = p2 are almost identical to those
shown for the mixture pressure. The results for gas density and gas temperature are shown in
Figure 2. We observe a clear difference in the robustness of the computation depending on the
interfacial pressure. This is because the solutions to this problem for the 5-equation model and
the 6-equation model are very different. In the 6-equation model, each phase follows its own
thermodynamics and since we use a stiffened gas equation of state, negative pressures down to
−p∞,2 are allowed. In the initial stages of the computation, the hyperbolic step of the scheme
tries to generate a middle state for the Riemann problem with a negative liquid pressure. This
is not allowed for the 5-equation model, which considers only a mixture pressure that must be
valid for both phases. This constraint is enforced during the relaxation process. This issue
can result in a negative interfacial pressure depending on its chosen expression. As the energy
exchanges during the relaxation process are driven by the interfacial pressure (see (13)) when its
sign changes, so does the sign of the energy exchanges. In Fig. 2 this phenomenon is observed
for the case pI = p: negative interfacial pressures cause the energy exchanges to revert direction
during the relaxation process and the gas undergoes a heating expansion causing a temperature
instability. For the case pI = p1, positivity of the interfacial pressure is always guaranteed and
the gas cools down when it expands during the relaxation process; as a result, only a small
temperature peak can be observed. This illustrates how the interfacial pressure parameter can
have a major impact on the robustness of the scheme.

5.2 Extreme shock in an epoxy-spinel mixture

We now consider the Riemann problem proposed in [7] corresponding to an extreme shock
propagating in an epoxy-spinel mixture. Epoxy has phase index 1; the stiffened gas EOS param-
eters used are γ1 = 2.43, p∞,1 = 5.3GPa and γ2 = 1.62, p∞,2 = 141GPa. The initial condition
is made up by two states at rest with ρ1 = 1185 kgm−3, ρ2 = 3622 kgm−3 and α1 = 0.5954, the
pressure is pL = 2 × 1011 Pa in the left state and pR = 1 × 105 Pa in the right state; the states

8
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are separated at x = 0.6m. The problem is solved using the first-order scheme on two different
meshes (4000 and 8000 cells) at a CFL number of 0.4, the final time is tf = 3.5×10−5 s. Results
for the epoxy volume fraction for different choices of interfacial pressure are shown on Figure 3.

The results show that mesh convergence has been attained and that for each case a different
intermediate state for the Riemann problem is obtained. Here we have used the two extreme
cases pI = p1 and pI = p2; a general expression for pI consists in some weighted average
of p1 and p2 and will therefore lead to an intermediate state between the ones on the figure
(green and red ones) as can be seen for the particular case pI = p. This is an illustration
on how the interfacial pressure – which is not present in the 5-equation model – impacts the
physical solutions obtained by modifying the volume fraction jump condition that is enforced
by the numerical scheme. This is because, unfortunately, the 5-equation model does not have a
complete set of well-defined jump conditions; however note that the change in volume fraction
observed is quite moderate when compared to the extreme pressure ratio used to generate it;
thus indicating that the theoretical shortcomings of the model — the absence of a Rankine-
Hugoniot condition for the volume fraction — might have only a limited impact for practical
cases.

Figure 3: Epoxy volume fraction profiles obtained for the extreme epoxy-spinel shock case with
different interfacial pressures (pI = p1, p2 or p denoted pmix in the legend) with zoom on the
intermediate state. Two meshes are used : 4000 cells (dotted line) and 8000 cells (full line).

5.3 Shock-droplet interaction problem

The last test case we consider is a shock-droplet interaction case which has been studied
experimentally in [28] and numerically using a 4-equation model in [25]. We focus on the early
stage of the interaction. An axisymmetrical configuration is simulated, details on the initial
conditions and the geometry are found in [25]. In pure regions, a residual volume fraction
for the absent phase is set to 10−8. We use the scheme with a MUSCL reconstruction of
the primitive variables with a minmod limiter and a two-stage second order SSP Runge-Kutta
method at CFL 0.3 in order to attain second order accuracy. Results for the instantaneous
pressure relaxation scheme are shown in Figures 4 and 5. After the shock propagates through
the droplet, a strong rarefaction wave is generated. Similarly to the double rarefaction wave
problem (Section 5.1), negative liquid pressures after the hyperbolic step can cause erroneous
energy exchanges and result in exceedingly high gas temperatures when the wrong interfacial
pressure is used which will, in turn, affect the pressure profile (see Figure 4). Setting pI = p1
prevents negative interfacial pressures, but as with the implicit method [7], the scheme still leads
to extreme gas temperatures, although less than with pI = p, and with a lesser impact on the
pressure profile (see Figure 5).
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Figure 4: Pressure and gas temperature at t = 3.5 µs with interfacial pressure pI = p1 (top half)
and pI = p (bottom half). Black lines are volume fraction isolines α = 0.05 and α = 0.95.

In Figure 6, we have compared the results using the instantaneous pressure-temperature
relaxation scheme with the results for the 4-equation model obtained using a second order HLLC
scheme from [25]. The results for the early stage of the shock-droplet interaction are very similar,
showing that with the instantaneous pressure-temperature relaxation we recover the solutions
of the 4-equation model. Moreover, the method is more robust as the second order HLLC
scheme was combined with a pressure threshold to ensure positivity while no such threshold was
required during the computation with the relaxation scheme. Additionally, results in Fig. 6 show
some numerical pressure oscillations along the droplet’s interface for both HLLC schemes. This
phenomena has been observed in previous works as it is well-known that finite volume schemes
for the 4-equation model suffer from such oscillations through contact discontinuities with a non-
uniform temperature [29]. On the contrary, as can be observed in Figs. 4 and 5, the 5-equation
model does not suffer from this shortcoming and yields a smooth pressure profile. As a result,
the 5-equation model is more suited for these type of high-velocity two-phase flow simulations
provided as robust discretization is used; within our framework, this entails an appropriate
choice for the interfacial pressure relaxation parameter (as well as a robust discretization of the
homogeneous 6-equation model — see Sec. 3 — which will be discussed in a forthcoming paper).

Figure 5: Pressure and gas temperature at t = 3.5 µs using the interfacial pressure pI = p1 (top
half) and the implicit approximation method [7] (bottom half). Black lines are volume fraction
isolines α = 0.05 and α = 0.95.

6 CONCLUSIONS

We have investigated the class of instantaneous relaxation schemes. Focus has been given on
the role of interfacial pressure in instantaneous pressure relaxation schemes, which are widely
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Figure 6: Pressure profiles obtained for the shock-droplet interaction case at times t = 0.35 µs
(top) and t = 0.74 µs (bottom) by solving the 4-equation model with an instant pressure-
temperature relaxation scheme (left) or by solving directly the 4-equation model (right) .

used to solve the 5-equation model [7, 8, 9]. As the interfacial pressure is not present in the
5-equation model, it is a free parameter of the numerical scheme that must be set by the user.
As the model is non-conservative and does not have a complete set of jump conditions, weak
solutions are not unique and different numerical schemes can converge to different solutions for
strong shocks. Through a detailed discussion on the interfacial pressure, we have shown that
this parameter may impact the convergence of the scheme to such solutions as it determines the
thermodynamic path followed during the relaxation process as well as the resulting equilibrium
state. Moreover, we have shown that the correct choice for this parameter can be paramount to
ensure the robustness of the numerical scheme, whereas, for the pressure-temperature relaxation
scheme, no interfacial pressure parameter is necessary as all thermodynamic paths lead to the
same equilibrium state and the physical solutions of the 4-equation model are recovered. How-
ever, the pressure-temperature relaxation scheme suffers from other shortcomings, such as the
pressure oscillations through contact discontinuities. Eventually, the two-temperature frame-
work provided by the 5-equation model allows for the modelling of heat exchange at finite rate
and phase change with thermal inertia while keeping a simple wave structure, unlike other mod-
els such as the 7-equation model [1] and we have proposed an efficient and accurate way of
simulating this model, without additional cost compared to existing strategies, which offers an
interesting strategy for high-speed flows.

This work was supported by the Agence Innovation Défense (AID) and the CIEDS project
OPEN-NUM-DEF, whom we would like to acknowledge.
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Ward Haegeman, Joël Dupays, Clément Le Touze and Marc Massot

[2] Saurel, R. & Abgrall, R. Journal of Computational Physics (1999). 150(2):425–467.

[3] Kapila, A. K. et al. Physics of Fluids (2001). 13(10):3002–3024.

[4] Labois, M. Ph.D. thesis, Université de Provence - Aix-Marseille I (2008).
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