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Abstract. 15MnTi steel is widely used in high load structures such as bridges, pressure vessels, 
ships, and vehicles due to its excellent mechanical properties. In the course of service, the 
failure of steel structure is mostly caused by fatigue fracture. In order to investigate the crack 
growth of 15MnTi steel under fatigue load, the cohesive zone model (CZM) was used to simulate 
the crack growth. The CZM can simulate brittle and plastic fracture behavior by using the 
function of crack interface opening force and opening displacement to avoid the stress 
singularity of crack tip. On this basis, a cyclic cohesive zone model (CCZM) was established to 
study the fatigue crack propagation behavior. This model effectively links damage, tractive 
force, and cumulative displacement while incorporating the process of fatigue crack growth to 
accurately simulate material damage evolution under fatigue load. Experimental studies on 
crack growth in 15MnTi steel at three stress ratios reveal a linear relationship between crack 
growth rate and stress intensity factor range for different stress ratios. The parameters of Paris 
formula were calculated using crack growth rate and stress intensity factor range, which 
provided reference for the selection of model parameters. By utilizing the user element 
subroutine (UEL)  in Abaqus and compiling the CCZM using Fortran language specifically for 
15MnTi steel, simulations were conducted to analyze the evolution of crack tip state under 
various stress ratios and discuss the corresponding crack growth behavior based on 
experimental observations. The results demonstrate that the fatigue crack propagation rate 
varies linearly with both stress ratio range and stress intensity factor range, consistent with 
experimental findings. The results of the opening and closing evolution of the crack tip are 
consistent with the law of crack propagation, which indicates that the plastic behavior of the 
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crack tip can be effectively characterized by the CCZM. Furthermore, parameters obtained 
from the cyclic cohesive zone model's Paris formula closely match experimental data, thus 
validating its accuracy and feasibility in simulating fatigue crack propagation behavior. 

1 INTRODUCTION 

With the rapid development of computers, numerical simulation methods were widely used 

in the study of crack propagation. After continuous research by scholars, the commonly used 

methods for the initiation and dynamic propagation of cracks include the preset crack path 

method [1], the grid re-division method [2], the extended finite element method [3], and the 

cohesive zone model (CZM) method. Compared with other methods, the advantage of the CZM 

is that it utilizes the function of crack interface opening force and opening displacement to avoid 

stress singularity at the crack tip, simulate brittle fracture behavior and plastic fracture behavior.  

In 1963, Paris [4] proposed the Paris formula based on fracture mechanics theory, which can 

describe the law of crack propagation. Most research on the law of fatigue crack propagation is 

also based on this formula. Radon et al. [5] observed a typical linear relationship between crack 

propagation length and number of cycles through cyclic tensile experiments, based on the 

concept of linear elastic fracture mechanics. Liu et al. [6] extended the Paris formula, explaining 

the essence of crack propagation from a microscopic perspective and endowing the material 

parameters in the Paris formula with clear physical meanings, providing a theoretical basis for 

subsequent research on this formula. Park et al. [7]  treated C as a random variable and m as a 

constant, based on the Paris formula. The probability distribution of fatigue crack propagation 

resistance has been determined.  

Nguyen [8] established a cohesive force model based on the cohesive theory of fracture and 

successfully simulated fatigue crack propagation. Goyal et al. [9] considered the impact of 

unloading process on fatigue process and extended the existing cohesive zone model to achieve 

damage calculation during unloading process. Pereira [10] used a cyclic cohesive zone model to 

consider the accumulation of loading and unloading damage at the crack front, achieving crack 

propagation life prediction. Yang [11] developed a user element subroutine (UEL) for scaled 

boundary finite element methods for general static and dynamic stress analysis and validated it 

through examples.  

In summary, although many scholars have conducted numerical simulations on crack 

propagation behavior, there are few detailed analyses and studies on crack propagation laws 

based on cyclic cohesion models that consider fatigue damage evolution. And develop a UEL 

subroutine to simulate fatigue crack propagation behavior based on the cyclic cohesion model 

proposed by Roe [12], Xu and Needleman [13]. By comparing with experimental results, the 

feasibility and accuracy of studying fatigue crack propagation behavior based on cohesive force 

model are verified. 

2 FATIGUE CRACK PROPAGATION EXPERIMENT OF 15MNTI STEEL 

Table 1 shows the basic mechanical property parameters of 15MnTi steel, which has good 

strength and plasticity, so it is often used for supporting structures of equipment in chemical 

industry, ships and pressure vessels. 
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Table 1: Material Parameters 

Young's Modulus 

E(GPa) 

Yield Strength  

𝜎𝑠 (MPa) 

Poisson's ratio 

 ν 

density 

𝜌 (kg/m3) 

Specific Heat Capacity 

C[J/(kg·K)] 

210 638 0.3 7850 500 

To analyze the effect of stress ratio on the fatigue crack propagation rate of 15MnTi steel, 

compact tensile experiments were conducted with stress ratios of R = 0.1, 0.2, and 0.5. Based 

on experimental measurements of crack length and corresponding loads, the crack propagation 

rate (da/dN) was calculated using the secant method. Fig.1 shows the linear fitting results of 

lg(da/dN)-lg(ΔK) under different stress ratios. 
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Figure 1: Relationship between crack propagation rate and stress intensity factor range under different 

stress ratios: (a) R = 0.1, (b) R = 0.2, (c) R = 0.5 
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In Fig. 1, there is a significant linear relationship between crack propagation rate and stress 

intensity factor range under different stress ratios, and the fatigue crack propagation rate 

increases with the increase of stress intensity factor range. According to the basic form of the 

Paris formula, taking the logarithm on both sides of the equation yields: 

 ( )lg / lg lgda dN C m K= + D  (1) 

The paper selects the single specimen method and obtain the parameter C  of the Paris 

formula through linear regression m . As shown in Table 2: 

Table 2: Average values of Paris formula parameters under different stress ratios 

Stress ratio 

R 

Average value of 

parameter  

C 

Average value of 

parameter  

m 

Paris formula 

0.1 1.4108×10-9 1.7495 (da/dN)ave=1.4108×10-9ΔK1.7495 

0.2 5.6938×10-10 1.9158 (da/dN)ave=5.6938×10-10ΔK1.9158 

0.5 1.7033×10-11 2.4551 (da/dN)ave=1.7033×10-11ΔK2.4511 

3 NUMERICAL SIMULATION OF FATIGUE CRACK PROPAGATION BEHAVIOR 

3.1 Fatigue cumulative damage criterion 

Unlike conventional crack propagation problems, loading or unloading and damage 

evolution are key considerations [14] for fatigue crack propagation problems. To accurately 

describe the damage evolution behavior of elements under fatigue loading, these two rules are 

introduced into the cyclic cohesion zone model.  

Under tensile load, there is a relationship between the traction force nT  and the opening 

displacement nΔ  as follows:  

 max,0

0 0

exp 1n n
n

Δ Δ
T 

 

   
= −   

   
 (2) 

where, max,0  represents the initial strength without damage, 0   is the feature length 

corresponding to max,0 . After considering the evolution of damage, the real-time strength of 

cohesive units will continuously decrease due to damage. The real-time strength max  during 

the damage evolution process needs to be continuously updated based on the degree of damage 

to the unit at this time. The calculation of real-time strength of cohesive units is in Eq. (3):  

 max max,0 (1 )cD = −  (3) 

For the calculation of the damage variable cD
•

 is shown in Eq. (4): 
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 (4)  

where, cD
•

 represents the cumulative rate of fatigue damage  
nΔ  is the normal opening 

displacement  Δ  is the cumulative opening displacement  f is the durability limit of cohesive 

units  fC represents the durability coefficient, max,0( / )f fC C = .
 is the cumulative cohesive 

unit length, usually set as an integer multiple of the characteristic length
0  , and used to 

normalize the effective opening displacement increment of the material. The function H is a 

step function, which represents that when Δ   is greater than 
0  , the cumulative fatigue 

calculation rate is only greater than 0, indicating that the element begins to experience fatigue 

damage. 

The cyclic loading process can cause changes in the stiffness of the elements, thereby 

altering the loading or unloading path. The relationship between traction force and opening 

displacement can be explained by Eq. (5) for this mechanical behavior: 

 ,max ,max( )n n n n nT T K Δ Δ= + −  (5) 

where, ,maxnT  is the maximum normal tension of the cohesive model  ,maxnΔ is the maximum 

normal opening amount of the cohesive model  nK   is the normal stiffness of the cohesive 

model ,max ,max( / )n n nK T Δ=   

During the process of continuous opening and closing of cracks, maybe 0nΔ  , which means 

0nT  , indicating a state of crack compression. At this point, if the cumulative damage variable 

of the interface element reaches the critical value of 1, it indicates that the interface element has 

completely failed and there is contact on both sides of the crack surface. When the interface 

unit is in such a state, the relationship between traction and opening displacement will follow 

the relationship shown in Eq. (6). 

 max,0

0 0

( )exp(1 )n n
n

Δ Δ
T 

 
= −  (6) 

It should be noted that when the crack interface is in a compressed state, the initial strength 

of the undamaged element needs to be multiplied by the penalty stiffness coefficient of the 

larger cohesive element. In this paper,  = 30 [15]. 

3.2 Algorithm Implementation of CCZM 

For the cyclic cohesive zone model developed in this study, the fatigue cumulative damage 

criterion and cyclic loading criterion are written into finite element software using Fortran 

language. The normal opening displacement of Gaussian points is calculated based on 

coordinate transformation matrix and element node displacement. The unit damage variable 

D is calculated through intermediate state variables to determine the state of the unit. Fig. 2 is 
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the algorithm flowchart of the cyclic cohesion zone model. 

To improve computational efficiency and consider the symmetry of the model, the process 

of model establishment and mesh division were optimized. The final crack propagation path 

and local refinement mesh are shown in Fig. 3. 

 

Figure 2: Algorithm flow of the cyclic cohesion model 

 
(a) Crack propagation path 
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(b) Local refinement mesh 

Figure 3: Finite element model 

For a set of horizontal element nodes adjacent to a 4-node line element with 0 thickness, the 

degrees of freedom in the X and Y directions are restricted.The periodic displacement boundary 

conditions that vary with time are applied to the outer boundary of the model [15]: 

 

2

2

(3 4 1)
cos sin

( ) 2 2 22

( ) 2 (3 4 1)
sin cos

2 2 2

Ix

y

u t K r

u t

  

    

 − −  
+      =  

 − −   −  
  

 (7) 

where, ,r （ ）is the coordinates of the outer boundary nodes of the finite element model in polar 

coordinates, IK is the stress intensity factor. 

The acquisition of cohesion model parameters usually requires continuous adjustment based 

on experimental and numerical simulation results [16]. In the study, the parameters of the cyclic 

cohesion model used to simulate fatigue crack propagation behavior were calibrated based on 

the experimental results of fatigue crack propagation, as shown in Table 3. 

Table 3: Parameters of the CCZM used for simulating fatigue crack propagation behavior 

max,0 (MPa) 
0 (μm) 

(μm) nΦ (KJ/m2) Cf 

2600 3.5 17.5 24.74 0.28 

4 ANALYSIS OF FATIGUE CRACK PROPAGATION LAW 

In order to investigate the changes in the open and closed state of the free surfaces on both 

sides of the crack tip during crack propagation, the crack tip opening displacement of each 

cohesive unit along the crack propagation path was extracted when the crack tip extended to 

different positions. Fig. 4 shows the numerical simulation results of the crack closure and 

opening states at different cycles when the crack propagates to 1.6 mm within a fixed stress 

intensity factor range under three different stress ratios. 
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(a) R = 0.1(closure) 
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(b) R = 0.1(opening) 
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(c) R = 0.2(closure) (d) R = 0.2(opening) 
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(e) R = 0.5(closure) (f) R = 0.5(opening) 

Figure 4: Crack tip state under different stress ratios 

Compared with the crack tip opening and closing states at R = 0.1, 0.2, and 0.5, the maximum 

regularized opening displacement during the crack opening process is almost not affected by 
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the stress ratio. However, during the crack closure process, the maximum regularized opening 

displacement increases as the stress ratio gradually increases. This is because when the range 

of stress intensity factors remains constant, the maximum cyclic load at R = 0.5 is maximum, 

and the plastic deformation at the crack tip caused by stress concentration increases with the 

increase of maximum load [17].  

Unlike elastic deformation, plastic deformation is an irreversible process, so even if the crack 

is in a closed state, the opening displacement caused by plastic deformation will increase with 

the increase of maximum load. At the same time, the increase in stress ratio leads to an increase 

in the minimum stress of fatigue load. The increased stress cancels out the residual compressive 

stress at the crack tip, weakening the crack closure effect [18]. Therefore, based on the opening 

and closing evolution law of the crack tip, it can be verified that the cyclic cohesive force model 

can simulate the plastic behavior of fatigue crack propagation. 

To investigate the influencing factors of crack propagation rate, several groups of numerical 

simulations were conducted on the fatigue crack propagation process under different stress 

intensity factor amplitudes and stress ratios. Fig. 5 shows the relationship between the stress 

intensity factor range and crack propagation rate at stress ratios R of 0.1, 0.2, and 0.5, 

respectively. 
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(b) R = 0.2  (c) R = 0.5  

Figure 5: Crack propagation rate under different stress ratios 
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In Fig. 5, it can be observed that the range of stress intensity factors and stress ratios both 

affect the crack propagation rate, and the fatigue crack propagation rate increases more 

significantly in the high stress intensity factor range than in the low stress intensity factor range. 

The relationship between the stress intensity factor range and crack propagation rate at stress 

ratios R of 0.1, 0.2, and 0.5 obtained through experiments and numerical simulations is shown 

in Fig. 6. 

Fit the results of simulating crack propagation behavior using the cyclic cohesive force unit 

and determine the parameters of the Paris formula, as shown in Table 4. 

Overall, the trend of the parameters obtained from numerical simulation fitting with stress 

ratios of R = 0.1, 0.2, and 0.5 is consistent with the trend of the material parameters obtained 

from experiments with stress ratios 
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                 (a) R = 0.1                                                                            (b) R = 0.2 
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(c) R = 0.5 

Figure 6: da/dN - ΔK Relationship under Different Stress Ratios 
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Table 4 Paris Formula Parameters 

Stress 

ratio 

R 

Experimental 

value of 

parameter 

 C 

Experimental 

value of 

parameter  

m 

Simulated 

value of 

parameter  

CFEM 

Simulated 

value of 

parameter  

MFEM 

Correlation 

coefficient 

r 

0.1 1.4108×10-9 1.7495 7.616×10-10 1.7068 0.9960 

0.2 5.6938×10-10 1.9158 1.760×10-10 2.1824 0.9910 

0.5 1.7033×10-11 2.4551 2.925×10-11 2.7520 0.9918 

5 CONCLUSIONS 

- The results of both experiments and numerical simulations indicate that as the stress 

ratio R increases from 0.1 to 0.5, the fatigue crack propagation rate parameter C 

decreases, while the fatigue crack propagation parameter m increases. 

- The results of applying the cyclic cohesion model to the evolution of crack tips 

conform to the law. The fatigue crack propagation rate of 15MnTi steel shows a linear 

relationship with the change of stress ratio and stress intensity factor range, increasing 

with the increase of both. Moreover, the fatigue crack propagation rate increases more 

significantly in the high stress intensity factor range than in the low stress intensity 

factor range.  

-  The Paris material parameter C obtained through the cyclic cohesion model remains 

on the same order of magnitude as the experimental results except for R = 0.1. The 

errors between parameter m and experimental results are 2.5%, 12%, and 10.8%, 

respectively, all of which do not exceed 15%. The above results verify the correctness 

of subroutine compilation, the rationality of parameter selection for the cyclic cohesion 

model, and the accuracy of simulating fatigue crack propagation behavior based on the 

cyclic cohesion model. 
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