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Abstract. We propose an immersed-boundary approach, based on point collocation, five-point
integrated radial basis function stencils, rectangular Cartesian grids and smooth extension of the
solution, for solving the two-dimensional elliptic partial differential equation in a geometrically
complex domain.

1 INTRODUCTION

When the partial differential equations (PDEs) are defined in rectangular domains, one can
utilize high-order methods to solve them efficiently. For those methods, the domain is simply
represented using Cartesian grids and high-order accuracy is achieved for case of smooth solu-
tion. For complex domains, the idea of embedding the physical domains into rectangular ones
has received a great deal of attention. Examples of methods developed in this direction include
the smooth selection embedding method [1] and the smooth forcing extension method [2]. They
all require accurate imposition of the boundary conditions as well as smooth extension of the
solution or the forcing function to a box in order to achieve high accuracy. In [1], to force
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the solution in the computational domain to be globally smooth, a high-order PDE outside the
physical domain is solved, where all communication between the computational grid and the
boundary is achieved by convolution with regularized delta-functions, and to acquire a highly
accurate solution, Fourier spectral methods are employed. In [2], a Fourier extension method is
applied to directly extend the forcing.

Radial basis functions (RBFs) have become an important tool in numerical analysis. In the
integral (IRBF) approach, the RBFs are employed to represent a derivative and then integrated
to obtain approximations for lower-order derivatives and a function itself. The integral ap-
proach enables the RBF approximations to avoid a reduction in the convergence rate caused
by differentiation. In this work, the elliptic PDE is solved in a rectangular domain that covers
the physical complex one. Like [1], a smooth extension of the solution to a box is carried out.
Unlike [1], local approximations are employed to obtain a highly accurate discretization in the
computational domain and the discretized system is modified to account for the presence of the
immersed boundary [3, 4, 5, 6, 7]. The constants arising from the process of integrating the
RBFs provide an effective means of including nodal derivative values of the field variable into
the approximations. This inclusion can bring many benefits. For local stencils used in discretiz-
ing the PDE, it results in a significant improvement in the solution accuracy and enables the
IRBF solution to be not influenced much by the RBF width. For the smooth extension problem,
it enables the high-order PDE to be enforced at every interior grid node. The remainder of the
paper is organized as follows. In Section 2, the proposed method is presented. In Section 3,
numerical verification is carried out. Section 4 gives some concluding remarks.

2 PROPOSED METHOD

We describe the proposed method for its use in solving the Poisson equation

∂2ū

∂x2
+
∂2ū

∂y2
= f in Ω (1)

where f is a forcing function and Ω is a physical multiply-connected domain (Figure 1). Let H
be the hole regions. Cartesian grids are used to represent the computational domain, denoted by
C, covering Ω and H (i.e., the square without holes). The approximations used in the proposed
method are based on one-dimensional IRBFs. Let η represent the independent variables x and
y, and v the dependent variables up (the solution in Ω) and uh (the solution in H). In the η
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direction, the variable v along a grid line is represented by using the following IRBF scheme

∂qv(η)

∂ηq
=

Nη∑
k=1

wkGk(η) =

Nη∑
k=1

wkI
(q)
k (η), (2)

∂q−1v(η)

∂ηq−1
=

Nη∑
k=1

wkI
(q−1)
k (η) + c1, (3)

. . . . . . . . .

∂v(η)

∂η
=

Nη∑
k=1

wkI
(1)
k (η) + c1

ηq−2

(q − 2)!
+ c2

ηq−3

(q − 3)!
+ · · ·+ cq−1, (4)

v(η) =

Nη∑
k=1

wkI
(0)
k (η) + c1

ηq−1

(q − 1)!
+ c2

ηq−2

(q − 2)!
+ · · ·+ cq−1η + cq, (5)

where Nη is the number of RBF centers (grid points) under consideration, Gk(η) is the RBF,
I
(q−1)
k (η) =

∫
I
(q)
k (η)dη, I(q−2)

k (η) =
∫
I
(q−1)
k (η)dη, . . . , I(0)k (η) =

∫
I
(1)
k (η)dη, (w1, w2, . . . , wNη)

the RBF coefficients, and (c1, c2, . . . , cq) the integration constants. For the multiquadric func-
tion, Gk(η) =

√
(η − ηk)2 + a2k, where ηk is the center and ak is the width/shape-parameter. In

(2)-(5), RBFs are integrated q times and we refer to it as an IRBF scheme of order q, denoted
by IRBFq.

2.1 Discretizing the PDE without regard to the immersed boundary

Consider an interior node and its associated four neighbouring nodes (Figure 2). We apply
the 1D IRBF scheme (2)-(5) to compute ∂2u/∂x2 and ∂2u/∂y2 at the central node (xi, yj). In
the η direction, the IRBF approximation involves a set of 3 grid points (ηi−1, ηi, ηi+1) (Nη = 3).
For IRBFq, there are q integration constants and we utilise them to add q extra equations
to the conversion of the RBF space into the physical space. It was shown in [5] that the
IRBF solution is not influenced much by the RBF width when q ≥ 6. In this work, q = 6
is implemented. In the following conversion system, the equations are employed to impose
(∂2u/∂η2, ∂3u/∂η3, ∂4u/∂η4) at the two end-nodes

û = Cŵ, (6)

where

û =

(
ui−1, ui, ui+1,

∂2ui−1

∂η2
,
∂2ui+1

∂η2
,
∂3ui−1

∂η3
,
∂3ui+1

∂η3
,
∂4ui−1

∂η4
,
∂4ui+1

∂η4

)T
,

ŵ = (w1, w2, w3, c1, c2, c3, c4, c5, c6)
T ,
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and C is the matrix of size 9-by-9 (called the conversion matrix)

C =



I
(0)
1 (ηi−1) I

(0)
2 (ηi−1) I

(0)
3 (ηi−1)

η5i−1

5!

η4i−1

4!

η3i−1

3!

η2i−1

2
ηi−1 1

I
(0)
1 (ηi) I

(0)
2 (ηi) I

(0)
3 (ηi)

η5i
5!

η4i
4!

η3i
3!

η2i
2

ηi 1

I
(0)
1 (ηi+1) I

(0)
2 (ηi+1) I

(0)
3 (ηi+1)

η5i+1

5!

η4i+1

4!

η3i+1

3!

η2i+1

2
ηi+1 1

I
(2)
1 (ηi−1) I

(2)
2 (ηi−1) I

(2)
3 (ηi−1)

η3i−1

3!

η2i−1

2
ηi−1 1 0 0

I
(2)
1 (ηi+1) I

(2)
2 (ηi+1) I

(2)
3 (ηi+1)

η3i+1

3!

η2i+1

2
ηi+1 1 0 0

I
(3)
1 (ηi−1) I

(3)
2 (ηi−1) I

(3)
3 (ηi−1)

η2i−1

2
ηi−1 1 0 0 0

I
(3)
1 (ηi+1) I

(3)
2 (ηi+1) I

(3)
3 (ηi+1)

η2i+1

2
ηi−1 1 0 0 0

I
(4)
1 (ηi−1) I

(4)
2 (ηi−1) I

(4)
3 (ηi−1) ηi−1 1 0 0 0 0

I
(4)
1 (ηi+1) I

(4)
2 (ηi+1) I

(4)
3 (ηi+1) ηi+1 1 0 0 0 0


.

Solving (6) yields
ŵ = C−1û. (7)

The second derivative of u at ηi is thus calculated by

∂2ui
∂η2

= D2ηû, (8)

where D2η is a row matrix of 9 coefficients that is defined as

D2η =
[
I
(2)
1 (ηi) I

(2)
2 (ηi) I

(2)
3 (ηi)

η3i
3!

η2i
2

ηi 1 0 0
]
C−1.

In practice, the coefficient set D2η is acquired by using Gaussian elimination to solve the fol-
lowing algebraic equation set:

CTDT2η =

(
I
(2)
1 (ηi), I

(2)
2 (ηi), I

(2)
3 (ηi),

η3i
3!
,
η2i
2
, ηi, 1, 0, 0

)T
. (9)

2.2 Modifying the discretized system to account for the presence of the immersed bound-
ary

The stencils near the immersed boundary are modified to account for its presence. In each
direction, we construct the approximation based on 4 nodes (three grid nodes: (ηi−1, ηi, ηi+1)
and one boundary node: ηb) by also using IRBF6 (i.e. q = 6). Two configurations of nodes
are shown in Figure 3; they share a common feature: there are two grid nodes in the physical
domain and one grid node in the extension domain. The conversion system takes the form

Û = CbŴ . (10)

where

Û =

(
ui−1, ui, ui+1, ub,

∂2ui−1

∂η2
,
∂2ui+1

∂η2
,
∂3ui−1

∂η3
,
∂3ui+1

∂η3
,
∂4ui−1

∂η4
,
∂4ui+1

∂η4

)T
,
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Ŵ = (w1, w2, w3, w4, c1, c2, c3, c4, c5, c6)
T ,

and Cb is the matrix of size 10-by-10

C =



I
(0)
1 (ηi−1) I

(0)
2 (ηi−1) I

(0)
3 (ηi−1) I

(0)
4 (ηi−1)

η5i−1

5!

η4i−1

4!

η3i−1

3!

η2i−1

2
ηi−1 1

I
(0)
1 (ηi) I

(0)
2 (ηi) I

(0)
3 (ηi) I

(0)
4 (ηi)

η5i
5!

η4i
4!

η3i
3!

η2i
2

ηi 1

I
(0)
1 (ηi+1) I

(0)
2 (ηi+1) I

(0)
3 (ηi+1) I

(0)
4 (ηi+1)

η5i+1

5!

η4i+1

4!

η3i+1

3!

η2i+1

2
ηi+1 1

I
(0)
1 (ηb) I

(0)
2 (ηb) I

(0)
3 (ηb) I

(0)
4 (ηb)

η5b
5!

η4b
4!

η3b
3!

η2b
2

ηb 1

I
(2)
1 (ηi−1) I

(2)
2 (ηi−1) I

(2)
3 (ηi−1) I

(2)
4 (ηi−1)

η3i−1

3!

η2i−1

2
ηi−1 1 0 0

I
(2)
1 (ηi+1) I

(2)
2 (ηi+1) I

(2)
3 (ηi+1) I

(2)
4 (ηi+1)

η3i+1

3!

η2i+1

2
ηi+1 1 0 0

I
(3)
1 (ηi−1) I

(3)
2 (ηi−1) I

(3)
3 (ηi−1) I

(3)
4 (ηi−1)

η2i−1

2
ηi−1 1 0 0 0

I
(3)
1 (ηi+1) I

(3)
2 (ηi+1) I

(3)
3 (ηi+1) I

(3)
4 (ηi+1)

η2i+1

2
ηi−1 1 0 0 0

I
(4)
1 (ηi−1) I

(4)
2 (ηi−1) I

(4)
3 (ηi−1) I

(4)
4 (ηi−1) ηi−1 1 0 0 0 0

I
(4)
1 (ηi+1) I

(4)
2 (ηi+1) I

(4)
3 (ηi+1) I

(4)
4 (ηi+1) ηi+1 1 0 0 0 0



.

The only difference between Û in (10) and û in (6) is that the former contains an extra value, ub,
which is the boundary condition on the immersed boundary. The second-order derivative of u at
the central node of the stencil, i.e. ∂2ui/∂η2, is now expressed in terms of u at (ηi−1, ηi, ηi+1, ηb)
and its nodal derivatives at only (ηi−1, ηi+1). When compared to (8), there is an additional term
associated with ub, which represents the effect of the immersed boundary on the discretization
in the entire computational domain.

2.3 Constructing a smooth extension of the solution u into the computational domain C

To achieve high-order accuracy, the solution in a hole, uh, should be constructed to be smooth
across the hole’s boundary. Assume that the solution in Ω, up, is a known function that is Ck

continuous in Ω. In the smooth extension approach [1], the solution uh is found by solving the
following Kth-order PDE in a hole {

HKuh = 0,
∂juh

∂nj
= ∂jup

∂nj
,

(11)

where HK is a high-order differential operator, j = (0, 1, . . . , k), K = 2(k + 1) and ∂ju/∂nj

is the jth normal derivative of u on the hole’s boundary. As discussed in [1], the system matrix
becomes ill-conditioned for large k. In this work, the differential problem is solved iteratively.
The solution at the previous iteration is known and we utilize it to derive the boundary condi-
tions for the smooth extension problem (11). We also investigate the case of usingK < 2(k+1)
and it will be shown that high-order accuracy is still achieved forK = 4 when k ≥ 2. The lower
the value of K the better the matrix condition number will be. After solving (11), we compute
a forcing function associated with uh.

For the globalCk regularity, the boundary values of uh and its derivatives (∂uh/∂η, . . . , ∂kuh/∂ηk)
are imposed. It is noted that (∂uh/∂x, . . . , ∂kuh/∂xk) are for the horizontal grid lines, while
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(∂uh/∂y, . . . , ∂kuh/∂yk) are for the vertical grid lines. These boundary values are obtained
after the IRBF approximations of u on the entire grid lines are carried out.

For each grid line in the extension domain, we employ IRBFq with q = 2k to accommodate
2k boundary derivative values at the two end-nodes of the grid line. The conversion system
takes the form

ûh = Chŵh. (12)

where

ûh =

(
uh1 , u

h
2 , . . . , u

h
Nη ,

∂uh1
∂η

,
∂uhNη
∂η

, . . . ,
∂kuh1
∂ηk

,
∂kuhNη
∂ηk

)T

,

ŵh =
(
w1, w2, . . . , wNη , c1, c2, . . . , c2k−1, c2k

)T
,

and Ch is the matrix of size (Nη + 2k)-by-(Nη + 2k)

Ch =



I
(0)
1 (η1) I

(0)
2 (η1) . . . I

(0)
Nη

(η1)
η2k−1
1

(2k−1)!
. . . η1 1

I
(0)
1 (η2) I

(0)
2 (η2) . . . I

(0)
Nη

(η2)
η2k−1
2

(2k−1)!
. . . η2 1

. . . . . . . . . . . . . . . . . . . . . . . .

I
(0)
1 (ηNη) I

(0)
2 (ηNη) . . . I

(0)
Nη

(ηNη)
η2k−1
Nη

(2k−1)!
. . . ηNη 1

I
(1)
1 (η1) I

(1)
2 (η1) . . . I

(1)
Nη

(η1)
η2k−2
1

(2k−2)!
. . . 1 0

I
(1)
1 (ηNη) I

(1)
2 (ηNη) . . . I

(1)
Nη

(ηNη)
η2k−2
Nη

(2k−2)!
. . . 1 0

. . . . . . . . . . . . . . . . . . . . . . . .

I
(k)
1 (η1) I

(k)
2 (η1) . . . I

(k)
Nη

(η1)
ηk−1
1

(k−1)!
. . . 0 0

I
(k)
1 (ηNη) I

(k)
2 (ηNη) . . . I

(k)
Nη

(ηNη)
ηk−1
Nη

(k−1)!
. . . 0 0



.

Solving (12) yields
ŵh = C−1

h ûh. (13)

It is noted that value of Nη employed here is typically much smaller than the number of grid
nodes of the entire grid line. Making use of (13), the derivatives of any order of the variable uh

with respect to x and y can be computed in terms of the nodal values of uh and the boundary
values of its derivatives. The advantage of incorporating the boundary conditions into the IRBF
approximations is that it allows the equation in (11) to be enforced at every interior node.

2.3.1 Solving the resultant algebraic system

We apply the Newton method with finite-difference Jacobian to solve the resultant algebraic
system. At each iteration, we carry out the following calculation tasks: (i) computes nodal
values of derivatives of second order and higher ones along the grid lines using the 1D IRBF
scheme [4], from which the boundary conditions (i.e. continuity conditions) for the Kth-order

6
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PDE in the extension domain are acquired; (ii) solves the extension problem for uh, from which
the forcing function in the extension domain (i.e. Fh) is derived; (iii) modifies the forcing
function by including new Fh; and (iv) updates the solution u in the computational domain.
The approximation of the derivatives along a grid line involves only its grid nodes and thus the
differentiation matrices stay the same whatever the number of holes inside the domain.

3 EXAMPLES

3.1 Example 1

The PDE and the exact solution are respectively given by

∂2ū

∂x2
+
∂2ū

∂y2
= exp(sin(x))(cos(x)2 − sin(x))− cos(y), (14)

ū = exp(sin(x)) + cos(y). (15)

The domain of interest is the square 0 ≤ x, y ≤ 2π with 9 holes of radius 0.4 (Figure 4).
This problem is solved with different uniform grids, Nx×Ny = (21× 21, 31× 31, . . . , 91×

91), and different values of k (different levels of the global regularity). The obtained results are
shown in Figure 5. The solution in the physical domain converges as O(h2.4), O(h3.9), O(h6.0),
O(h8.1) and O(h7.9) for the C0-, C1-, C2-, C3- and C4-continuity impositions, respectively. For
a given grid size, an increase in k results in a better accuracy of the solution.

We also study the effect of the order K of the PDE in the extension domain. The obtained
results are shown in Figures 6. With a decrease in K, one has a less accurate solution (Figure
6) but better condition number of matrix HK . Nevertheless, the fifth-order accuracy is still
achieved for K = 4.

3.2 Example 2

Consider the following PDE

∂2ū

∂x2
+
∂2ū

∂y2
= sin(x) sin(y), (16)

defined in the square 0 ≤ x, y ≤ 2π with 9 holes of radius 0.4 (Figure 4), and subjected to the
boundary condition ū = 0. For this problem, the analytical solution is not available. Our results
are compared with the one produced by the finite element method (FEM). It can be seen from
Figure 7 that the two methods yield similar results. Unlike the FE case, the IRBF solution is
defined everywhere in the square.

4 CONCLUSIONS

We have presented a new high-order discretization scheme, based on immersed boundary
smooth extension and integrated RBFs, for solving the elliptic equation in a multiply connected
domain. The discretization is based on a Cartesian grid, which does not conform to the geometry

7
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of the holes; the resultant algebraic systems have only 5 nonzero entries per row. High-order
accuracy is achieved by including nodal derivative values in local IRBF approximations, and
forcing the solution to be globally smooth in the entire encompassing domain. In solving for
the smooth extension of the solution, the constants arising from the process of integrating the
RBFs are utilised to include the boundary values of the derivatives in the IRBF approximations,
which enables high-order PDE in the extension domain to be enforced at every interior node.
Numerical experiments demonstrate that for a high level of the global regularity, high-order
accuracy (≥ 4) is still achieved by simply considering the fourth-order PDE in the extension
domain.
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collocation points for PDE

collocation points for BCs

Figure 1: A multiply connected domain: embedded boundaries, Cartesian grid and collocation points. The prob-
lem is solved in the domain without holes. Collocation points for enforcing the PDE are all grid nodes inside the
outer boundary (blues points), while collocation points for imposing the boundary conditions are points where the
grid lines cross the outer and inner boundaries (magenta squares).

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

Figure 2: A five-point stencil.
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i-1 i i+1

b

boundary

i-1 i i+1

b

boundary

Figure 3: Two possible configurations for a stencil near the immersed boundary ((ηi−1, ηi, ηi+1): grid nodes and
ηb: boundary node). They share a common feature: there are two grid nodes in the physical domain and one grid
node in the extension domain.
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Figure 4: 2D problems, 0 ≤ x, y ≤ 2π: a domain with 9 holes of radius 0.4
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Figure 5: Example 1, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, (21 × 21, 31 × 31, . . . , 91 × 91): the solution in the
physical domain converges as O(h2.4), O(h3.9), O(h6.0), O(h8.1) and O(h7.9) for the C0-, C1-, C2-, C3- and
C4-continuity impositions, respectively.

10
-1

10
0

Grid size

10
-10

10
-8

10
-6

10
-4

10
-2

E
rr

o
r

Fourth-order PDE

Sixth-order PDE

Eigth-order PDE

Figure 6: Example 1, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, global C3 regularity, (21× 21, 31× 31, . . . , 91× 91):
the solution in the physical domain converges as O(h4.7), O(h5.9), and O(h8.1) when the order of the PDE in the
extension domain is chosen as 4, 6 and 8, respectively.
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Figure 7: Example 2, 0 ≤ x, y ≤ 2π, 9 holes of radius 0.4, global C4 regularity, fourth-order PDE in the extension
domain: FE and IRBF solutions. The solution is smooth in the entire computational domain for the latter but not
defined in the holes for the former.
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