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Abstract: Model-based system engineering is a promising approach to achieve the design goal of green 

aviation by running virtual simulation to reduce energy consumption and emission. The virtual 

simulation of airborne systems encompasses the logic simulation of avionics and electromechanical 

controllers, as well as functional simulations of subsystems such as power system and hydraulics system 

[1]. Certain complex electromagnetic and fluid equations involved in this simulation possess 

characteristics of high computational costs and small convergence solving steps. Such inconsistency in 

the timescales of the entire simulation system results in a delay in the overall numerical simulation time. 

A common solution to address this issue is to employ surrogate models for model reduction [2]. 

The current model reduction methods used in airborne system integrated simulations in practical 

engineering tasks remain at the interpolation table stage, with low data complexity. However, most 

airborne system or module models are multidimensional, making it challenging to construct high-

dimensional surrogate models. To tackle these challenges, this paper proposes a semi-automatic model 

reduction method based on large language models and existing mature fitting algorithms. A complete 

toolchain for model reduction has been developed, firstly, utilizing large language models to assist in 

selecting fitting algorithms and constructing fitted models. Then, training and deployment of models are 

conducted using an artificial intelligence model development platform, which is integrated into the 

GvSimLab platform to connect to other airborne system models for joint simulation. 

Taking a particular IPMSM module(Internal Permanent Magnet Synchronous Motor) in airborne 

VFG system(Variable Frequency Generator system) as an example, this toolchain can elevate the model-

in-loop solving time from 30s per thousand steps to nearly real-time at 0.8s with R2 equals 0.9996. 

 

Key Words: Airborne System, Virtual Integration, Complex Model Computation, Surrogate model, 

Large Language Models 

1. Introduction 

With the increasingly severe challenges posed by global climate change, the concept of 

green aviation has emerged. It aims to reduce carbon emissions in the aviation transportation 

industry through technological innovation and optimized operational strategies, thereby 

achieving sustainable development in aviation. Model-Based Systems Engineering (MBSE), as 

an advanced systems engineering approach, provides robust support for the development of 

green aviation. By constructing and simulating complex system models, MBSE optimizes the 

design process and enhances research and development efficiency, playing a crucial role in 

aircraft engine design, aircraft system development, and more[3]. 
In the context of green aviation, the application of MBSE not only improves the energy efficiency 

and performance of aviation products but also promotes the aviation industry's transition towards low-

carbon and environmentally friendly practices. For example, researchers can use MBSE methods to 

systematically consider the requirements, architecture, and validation of aircraft engines during the 

design phase, enabling efficient development of aviation engine systems [4, 5]. Additionally, MBSE is 
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employed in the design and development of safety-critical systems in civilian aircraft, enhancing aircraft 

system safety while contributing to the goals of green aviation[6, 7]. 

In summary, MBSE plays a critical role in driving the development of green aviation. By 

providing a systematic, model-driven approach, it helps the aviation industry achieve higher 

energy efficiency and lower environmental impact in the design and manufacturing processes, 

which is essential for the industry's long-term sustainable development. 

1.1 Heterogeneous Model Integration 

In the process of implementing Model-Based Systems Engineering development for 

airborne systems, various stages and types of models are involved, collectively referred to as 

heterogeneous models. A background investigation into methods for integrating different types 

of models has been conducted, focusing on FMI (4 papers) and Modelica (3 papers). The 

challenge with these two methods lies in the necessity of converting source models into FMI or 

Modelica, which limits their universality. This study proposes a heterogeneous model 

integration framework that leverages the characteristics of both FMI and the source models, 

establishing an integration platform to achieve the integration of multiple heterogeneous 

models, including FMI, Simulink, C code, and AMESim. 

1.2 Surrogate Model for System Integration 

When dealing with practical engineering applications, it is inevitable to use high-precision 

and long-time-scale models for simulation. These models typically involve large computational 

costs and are difficult to solve, especially for simulations with longer time scales, where a single 

simulation may take several hours or even days to complete, resulting in high time and 

computational costs. To improve this situation, researchers prioritize the use of surrogate 

models [8, 9, 10, 11, 12]. The computational results of surrogate models are very close to those of 

the original models; however, due to their lower computational complexity, they greatly reduce 

time costs. Surrogate models are usually built using data-driven, bottom-up methods. They 

adopt a black-box approach, calculating the model's response based on a limited number of data 

points and establishing behavioral rules between inputs and outputs to build the surrogate model 
[13, 14]. However, due to the complexity of surrogate model algorithms and their high learning 

curves, they have not yet been widely implemented in engineering applications. Currently, the 

common solution in field engineering is still the use of interpolation tables, which can maintain 

relatively high accuracy for low-dimensional models. However, for high-dimensional models, 

the simulation effects using interpolation tables are not accurate enough [15, 16, 17].  

1.3 LLM Enhanced AutoML 

The application of machine learning requires human intervention, involving aspects such 

as feature extraction, model selection, and parameter tuning. Automated Machine Learning 

(AutoML) is the process of automating end-to-end machine learning application to real-world 

problems [18]. A complete AutoML process typically includes several stages such as data 

preparation, feature engineering, model generation, and model evaluation [19]. Among these, 

neural architecture search (NAS) is a hot research topic in AutoML tasks [20], capable of 

automatically learning the optimal network structure. 
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Figure 1 An overview of AutoML pipeline[4] 

Large Language Models (LLM) [21] are a class of language models pretrained on large-

scale text datasets. LLMs demonstrate remarkable capabilities across various natural language 

processing (NLP) tasks, with pretrained versions readily available to a wide user base [22, 23, 24].        

 According to research [25], the integration of these two fields can fundamentally push the 

boundaries of each other. Existing LLMs, such as GPT-4 [26], LLaMa [27], and PalM [28], exhibit 

a profound understanding of natural language and can generate coherent, context-aware 

responses. This advancement opens up new potential applications for challenging tasks 

involving diverse data domains, such as image and text processing, as well as the integration of 

domain-specific knowledge [29]. Utilizing LLMs to automate the model training process appears 

to be a promising choice, leveraging GPT as a bridge for various algorithmic models, avoiding 

the domain knowledge requirements of AutoML, and changing the user interaction with 

AutoML systems [30, 31].  

Given the challenges faced by current onboard system integrations and considering the 

practical technical difficulties such as the high learning curve and limited generality of 

surrogate models, this research proposes a semi-automatic model reduction method that 

combines LLM-enhanced AutoML with surrogate model construction and training. Our work 

has developed a complete model reduction toolchain. Firstly, the toolchain leverages LLMs to 

assist in selecting fitting algorithms and constructing fitting models. Then, it utilizes an artificial 

intelligence model development platform for model training and deployment, integrated into 

the GvSimLab platform, connecting other onboard system models for joint simulation. 

 This study applies the proposed approach to the specific IPMSM module (Interior 

Permanent Magnet Synchronous Motor) within the onboard VFG system (Variable Frequency 

Generator system), yielding promising results. Compared to the interpolation tools currently 

used, the toolchain improves the accuracy of simulating non-sample data by 15%. Compared 

to Simulink models, the toolchain achieves near real-time performance, reducing the solution 

time from 30 seconds per thousand steps to approximately 0.8 seconds with an accuracy of R2 

0.996. 

2.Platform Framework 

2.1 Overall Framework 

The complete toolchain for model reduction consists of three components: AI platform, 

LLM based Modeling pipeline and SimLab platform. The primary workflow, illustrated in 
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Figure 2, encompasses task decomposition, model selection, iterative optimization, model 

deployment, model invocation, interface parsing, and collaborative simulation. Initially, a large 

language model assists in selecting fitting algorithms and constructing fitting models. 

Subsequently, the AI model development platform is employed for training and deploying the 

models, which are then integrated into the SimLab platform to facilitate collaborative 

simulation with other onboard system models. 
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Figure 2 toolchain for model reduction 

2.2 SimLab Platform 

As illustrated in Figure 3, the Simlab platform is a model integration and simulation 

validation platform that supports multi-source heterogeneous models. Simlab platform supports 

a seamless integration of fully digital to semi-physical virtual simulation testing, offering an 

end-to-end, one-stop simulation service that encompasses project preparation, execution, and 

result evaluation. It facilitates simulation operations in both full-speed and real-time modes, 

and provides capabilities for real-time online monitoring, storage, and playback analysis of 

simulation data. In the construction of surrogate models, the model integration platform SimLab 

integrates these surrogate models with other models such as Simulink, SCADE, and FMU. 
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Figure 3 SimLab Platform 

2.3 The AI Model Development and Training Platform 

The AI model development and training platform provides a low-code "end-to-end" 

solution for the entire process from data access, data preprocessing, model training, model 

evaluation, model deployment, to model management. It integrates various algorithm 

components such as large language models, deep learning, and machine learning, allowing for 

rapid model building and deployment through a drag-and-drop modeling approach. This meets 

the engineering requirements of artificial intelligence, including the comprehensive utilization 

of big data resources and efficient collaboration. 

The overall architecture of the platform, as shown in Figure 4, consists mainly of two parts: 

the big data basic services and the smart application model development platform. The big data 

basic services serve as the core underlying engine for machine algorithm environments, 

comprising four parts: single sign-on, data center interfaces, artificial intelligence computing 

frameworks, and programming language interfaces. The smart application model development 

platform provides functions such as data resource library, algorithm library, model library, 

platform basic services, model design, model deployment, API invocation, and SDK. The 

platform facilitates the correlation of data, models, and intelligent decision-making applications 

through a series of activities including preprocessing of raw data, feature extraction based on 

intelligent decision-making objectives, model training, model evaluation, and final model 

generation, as illustrated in Figure 5. 
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Figure 4 AI Model Development and Training Platform 

 

 
 

Figure 5 AI Model Development and Training Platform Business Processes  
 

In addition, to address diverse application environments where no generic algorithm model fits all 

problems, the AI model development and training platform integrates a model library for managing 

historical data extraction rules and an algorithm pool for large-scale intelligent analysis. It offers 

subscription-based big data analysis and application services as per demand, enabling platform users to 

access resources from the model library and algorithm pool according to their business requirements for 

conducting business intelligence analysis. Currently, from the perspective of practical data applications, 

the algorithm library covers over 40 built-in algorithm components, including modeling assistant 
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algorithms, deep learning algorithms, classic machine learning algorithms, and traditional optimization 

algorithms. 

2.4 LLM Based AutoML Toolchain 

The AutoML toolchain based on Large Language Models (LLMs) provides an automated solution 

for processes such as data access, data preprocessing, model training, and model evaluation. It integrates 

algorithm libraries and model repositories from AI model development and training platforms. 

Leveraging the inference capabilities of LLMs in areas such as data processing, model structure design, 

and hyperparameter tuning, it rapidly constructs and deploys high-quality surrogate models, further 

meeting the demands of AI engineering. 

The overall workflow of this toolchain is illustrated in Figure 6, consisting primarily of large 

language models such as GPT-4 and the AutoML workflow.  

 

 
Figure 6 LLM based AutoML workflow 

This AutoML toolchain aims to utilize GPT-4 as an optimizer to efficiently complete automated 

machine learning tasks. When handling each AutoML task, the first step is to convert the task description 

and data into a text format that language models can parse, such as the form of Context Awareness 

(Chain of Thought, CoT). These texts are input as prompts into pretrained large-scale language models, 

based on which the models generate AutoML configurations. The objective of these configurations is to 

construct an AutoML workflow that can optimize evaluation metrics on specific datasets to achieve 

optimal performance. 

Subsequently, the generated configurations are used to train and evaluate the model. The 

performance evaluation metrics of the model are fed back to GPT-4, and based on this feedback and 

existing knowledge, the model generates an improved model configuration, thus entering the next 

iteration process. 

Based on this process, the AutoML toolchain can rapidly generate surrogate models based on text 

descriptions and data, significantly enhancing the user-friendliness of the AutoML system. By 

introducing large language models (LLMs) as optimizers, the time and computational resources required 

for searching the optimal model structure in AutoML are significantly reduced. 

 
Table 1 prompts in the AutoML toolchain 

Probl

em 

Encoding 

Prompt 

Problem Encoding Stage - You are a 'AutoML Expert' to help us throughout 

the entire AutoML process. This role would involve:1. Understanding the dataset,2. 

Preprocessing and feature engineering,3. Model selection and hyperparameter 

tuning,4. Evaluation and interpretation,5. Deployment and monitoring. By taking 

on this role, you can provide valuable guidance and expertise throughout the 

AutoML process, ensuring that you make informed decisions and obtain the best 

possible results from the models you build. Use '#' before every line except the 

python code. The goals would involve: 1. Load dataset from {{ file }} and 

preprocess the dataset and perform feature engineering. 2. Analyze the data if it's a 

classification problem or Regression problem. 3. Check if there is any non-numeric 

column, if there is any use pd.get_dummies(). 4. Split the preprocessed data into 
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training and testing sets and use target column as {{ target }}. 5. Find the best 

model for our problem. 6. Evaluate the best model's performance on the testing set. 

7. Get the best model python file for prediction on new data. 

Iterati

ve Prompt 

Prompt 

Iterative Prompt Stage - Read {{ model_code }} file and update the code 

according to below info. By using this model, we achieved R-squared with {{ R-

squared }}. Recommend a new model that outperforms prior architectures. Provide 

an explanation why the suggested model surpasses previous one. Use '#' before 

every line except the python code. 

 

3.Case Study and Experiment Setup 

3.1 Case Study 

This paper selects a three-level synchronous generator model built using Simulink as a 

research example, as illustrated in Figure 7. The three-level synchronous generator typically 

consists of three main parts: a permanent magnet generator, an AC exciter, and a main generator. 

The permanent magnet generator adopts a rotating magnetic pole structure, while the AC exciter 

uses a rotating armature structure, and the main generator also uses a rotating magnetic pole 

structure. 

The working process of the three-level synchronous generator can be summarized as 

follows: the winding of the permanent magnet generator generates three-phase AC power, 

which is rectified and used as the DC excitation power source for the AC exciter. The AC power 

generated by the three-phase armature of the AC exciter is converted into DC power under the 

action of the rotating rectifier installed on the rotor, and then serves as the excitation source for 

the excitation winding of the main generator. Finally, the armature of the main generator is 

located on the stator and can directly output three-phase AC power. 

When building the model, the sampling time is set to 2×10-7 seconds. If the sampling time 

exceeds this value, the model will fail to converge. The reason for this phenomenon is that 

during multi-step and multi-iteration calculations, the sparse distribution of sample points leads 

to a low sampling frequency and a long sampling period, resulting in increased errors between 

the linear estimation and fitting process and the original real dynamic process, which may lead 

to problems of no solution or ill-conditioned solutions. To ensure the stable operation of the 

model, it is necessary to use a relatively short sampling time. However, excessively short 

sampling times significantly increase the simulation time, thereby increasing the time cost of 

platform integration simulation and reducing the efficiency of simulation. Therefore, this paper 

conducts comparative experiments between the original model running directly and the model 

running after optimization using surrogate models to highlight the significant advantages of 

surrogate models in terms of efficiency and cost-effectiveness. 
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Figure 7 three-level synchronous generator mode 

3.2 Objective 

This study aims to deeply optimize motor models using "surrogate models" within the 

context of green aviation and model-driven development. Our goal is to construct a surrogate 

model using state-of-the-art machine learning algorithms to significantly improve simulation 

efficiency while ensuring model prediction accuracy (R² not less than 0.995). The objective is 

to achieve at least a 30-fold simulation acceleration, synchronizing model simulation time with 

real time, thereby greatly enhancing the practicality and responsiveness of simulation. 

Within this interdisciplinary research framework, we will focus on the following aspects: 

1. Green Aviation: Explore the potential of motor models in improving aircraft efficiency 

and reducing environmental impact. This includes optimizing motor performance to support 

more efficient electric propulsion systems, thus promoting the development of green aviation 

technology. 

2. Model-Based Systems Engineering: Investigate how to accelerate the design and 

development process of motor control systems using surrogate models. We will assess the 

effectiveness of surrogate models in automating design processes, reducing development time 

and costs, and improving design quality. 

In the process of building surrogate models, we will consider algorithm selection, 

optimization of feature engineering, and adjustment of model hyperparameters. Our goal is to 

develop a surrogate model that accurately reflects the dynamic characteristics of motor models 

while quickly responding to simulation demands. Additionally, we will explore different 

machine learning frameworks to determine the most suitable approach for our research needs. 

Through this study, we anticipate not only providing an optimized motor model but also 

offering a new strategy and methodology for motor system design and model-driven 

development processes in the field of green aviation. The research outcomes will contribute to 

the optimization of aircraft electric propulsion systems, accelerate the application of model-

driven development in the aviation sector, and contribute to achieving the goals of green 

aviation and sustainable development. 

3.3 Experiment Setup 

This study selects a specific Interior Permanent Magnet Synchronous Motor (IPMSM) 

module from the Variable Frequency Generator system (VFG) on aircraft as the subject of the 

case study to validate the effectiveness of the AutoML method in constructing surrogate models 

in real-world application scenarios. The validation process will be based on multiple 
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dimensions, including the surrogate model's coefficient of determination (R-squared), inference 

speed, and required computational resources. 

The coefficient of determination, R-squared, is a key statistical metric for measuring the 

accuracy of model predictions, reflecting the goodness of fit of the model to the data. R-squared 

values range between 0 and 1, with values closer to 1 indicating a stronger explanatory power 

of the model and better fit. 

The experimental data for this study are derived from simulation of a three-level 

synchronous generator model. The simulation duration is set to 1 second, during which 200,000 

data points are generated and recorded in the form of a time series. To evaluate the time cost of 

the simulation process, timing monitoring is performed during the simulation. 

After obtaining the simulation output data, we use algorithms to train and learn from the 

data to extract key parameters in constructing the surrogate model. Subsequently, the obtained 

surrogate model is used to re-predict data within a 5-second time range. Since the prediction 

process of the surrogate model is very rapid, extending the prediction time can effectively 

reduce statistical errors caused by uncertainties such as compilation processes. The prediction 

time is averaged to estimate the time cost required for predicting 1 second. To improve the 

reliability of the results, the experiment is repeated 6 times, and the time cost and coefficient of 

determination R-squared obtained from each experiment are averaged to eliminate the influence 

of random errors. 

In this experimental scenario, the motor model contains multiple dimensions of features. 

By gradually removing and adding features, multiple sets of experiments are designed to study 

the impact of different feature dimensions on the predictive performance of the surrogate model. 

This process not only helps reveal which features play a decisive role in the prediction results 

but also provides insights into feature selection for the model. 

The hardware platform used in the experiment is the AMD Ryzen Threadripper PRO 

5995WX, with 64 cores and a main frequency of 2.70GHz, as well as 64GB of RAM. When 

conducting machine learning training and inference, we ensure that the memory used does not 

exceed 4GB to simulate the performance of the model under resource-constrained environments. 

4. Result and Analysis 

To generate a surrogate model capable of fitting our dataset, we adopted an interactive approach. 

Specifically, we designed a detailed prompt that clearly specified the requirements for data analysis, 

data processing, and model generation. Then, we uploaded the prompt along with the data file to a large 

language model (LLM) to generate customized code. Using the code generated by the LLM, we 

conducted preliminary data analysis and surrogate model construction. In each iteration, we provided 

feedback through new prompts on the current model's fitting results and areas needing improvement. 

The LLM used this feedback to further optimize the code until satisfactory fitting results were achieved. 
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Figure 8 Multiple Sets of Surrogate Model Fitting Curves 

 
Figure 9 R2 values with different sample count 

In this study, we designed experiments to compare the performance of surrogate models 

with traditional Simulink simulations in terms of time cost and hardware resource consumption. 

The experimental results are as follows: 

Model Fit Comparison: Figure 8 shows the model fitting curves for six different data 

volumes. It is evident from the figure that as the data volume increases, the predictive curve of 
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the surrogate model becomes more consistent with the trend of the original dataset, proving that 

the surrogate model can maintain a high degree of fit with a certain data scale. 

R²Value: In Figure 9, we not only show the trend of increasing R² values with increasing 

data volumes but also highlight a shaded area to mark a critical observation point. The shaded 

area indicates that when the sample size approaches 400 data points, the surrogate model's fit 

has at least 0.95 confidence. This observation further strengthens our confidence in the model's 

predictive ability, as it shows that even with a relatively small sample size, the surrogate model 

can provide highly reliable predictions. The figure clearly shows that as the data volume 

gradually increases, the R² value steadily rises, eventually stabilizing at a very high level of 

0.9996. This excellent performance not only far exceeds our expectations but also, combined 

with the confidence indicated by the shaded area, further confirms that the surrogate model can 

maintain its superior accuracy under various data volume conditions. This finding is particularly 

important for practical applications because it means that even in situations where data 

acquisition is limited or costly, the surrogate model can still provide high-quality prediction 

results. Additionally, the high-confidence fit makes the surrogate model a powerful tool suitable 

for scenarios requiring fast and accurate predictions, such as green aviation and model-driven 

development. 

Time Cost: We compared the time cost of completing a 1-second simulation task using 

the surrogate model and the traditional Simulink simulation. The surrogate model achieved a 

significantly better performance of 0.8571 seconds compared to the Simulink model's 535 

seconds, achieving near-real-time simulation speed. 

Hardware Resource Consumption: We compared the memory consumption of both 

methods when completing a 1-second simulation task. The surrogate model's memory 

consumption was about 240 MiB, whereas the Simulink model's memory consumption was as 

high as 3.3 GB, more than 14 times that of the surrogate model. This comparison highlights the 

significant advantage of the surrogate model in resource utilization efficiency. 

These experiments not only visually demonstrate the advantages of surrogate models in 

simulation efficiency and resource consumption but also validate their potential in high-

precision simulations. These results are significant for advancing the fields of green aviation 

and model-driven development. 

5.Conclusion 

  This paper has effectively demonstrated the potential of leveraging Large Language Models (LLMs) 

and AutoML toolchains in the field of model-based system engineering, particularly within the context 

of green aviation. By integrating advanced machine learning algorithms and AI-optimized workflows, 

we have achieved a significant enhancement in simulation efficiency and accuracy through the 

development of high-fidelity surrogate models. Our case study on the IPMSM module within an airborne 

VFG system highlighted the transformative impact of these models, drastically reducing the model-in-

loop solving time while maintaining a high degree of accuracy (R² = 0.9996). 

 

The application of LLMs in automating the model reduction process has not only streamlined the design 

and development of airborne systems but also contributed to reducing the environmental footprint by 

enabling more energy-efficient simulations. The proposed semi-automatic model reduction method 

proved effective in tackling the challenges of high-dimensional model construction, showcasing a 

substantial improvement in computational efficiency and reduction of simulation time costs. 

 

Furthermore, the practical implications of this research extend beyond green aviation, offering insights 

and methodologies that can accelerate the application of model-driven development across various 

sectors. The successful implementation of our toolchain represents a significant step forward in the 
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automation of complex systems engineering, potentially revolutionizing the design and optimization of 

electromechanical systems. 

 

In conclusion, the integration of AI technologies into the development of surrogate models offers a 

promising avenue for enhancing system performance and efficiency in aerospace applications. This 

research not only contributes to the field of green aviation but also sets a benchmark for future studies 

aiming to harness the power of artificial intelligence in engineering simulations. 
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