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1Computer Systems Department, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
Email: gasper.petelin@ijs.si
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Summary. Accurate and reliable traffic flow forecasting is of primary importance for traffic
planning and management. While there is a growing interest in real-time traffic forecasting
models, accurate predictions remain a challenge due to the dynamic nature of traffic systems
and the multiple factors that affect the traffic flow. Point forecasts do not provide insights
regarding uncertainties associated with forecasts. Furthermore, many traffic flow models fail to
produce prediction intervals that accurately capture the uncertainty of the forecasts. Therefore,
we investigate the use of quantile regression models for traffic flow forecasting and highlight their
tendency to generate prediction intervals that are too narrow and poorly calibrated. To address
this issue, we propose using conformal predictions, which allow us to achieve well-calibrated
prediction intervals leading to more accurate, reliable and therefore trustworthy predictions.

1 INTRODUCTION

Accurate traffic flow forecasting is crucial for improving traffic planning and management,
reducing congestion and increasing the overall efficiency of transport systems. In recent years,
there has been increasing interest in developing models and algorithms that can accurately fore-
cast traffic conditions in real-time. However, accurate traffic forecasting remains a challenging
task due to the complex and dynamic nature of transport systems and the numerous factors
that can affect traffic flows. Despite their popularity, point forecasts do not have an uncertainty
associated with the forecast. This can reduce their usability and trustworthiness in the con-
text of decision-making. On the other hand, knowing the range of possible outcomes, including
worst-case and best-case scenarios, can help traffic managers use their resources more effectively,
plan detours and alternate routes, and implement safety measures when needed. It is, therefore,
crucial to generate prediction intervals with coverage levels when forecasting future traffic flow,
as this can contribute significantly to the usability of the models.

Our contribution: The paper explores the use of quantile regression models for traffic flow
forecasts, highlighting their advantages but also their tendency to generate prediction intervals
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that are too narrow and therefore poorly calibrated. Secondly, it demonstrates how the use of
conformal prediction can mitigate this problem by providing well-calibrated prediction intervals,
ensuring the model’s predictions remain closer to the desired probability coverage, leading to
more trustworthy forecasts. We published the dataset and code, to make them publicly available
1.

The paper is structured as follows: Section 2 provides a literature review on the topic.
Section 3 offers a detailed insight into the forecasting system we used, the results of which are
presented in Section 4. Finally, in Section 5 we conclude our work.

2 RELATED WORK

In this section, we briefly describe related work regarding traffic forecasting (Section 2.1) and
forecasting methods related to probabilistic forecasting and forecasts with prediction intervals
(Section 2.2).

2.1 Short-term Traffic Forecasting

Short-term traffic forecasting has been an active area of research for many years [21]. Various
techniques have been proposed for accurate traffic flow prediction, including statistical methods
(e.g., ARIMA and exponential smoothing), machine learning algorithms, and hybrid approaches.
While statistical methods accurately capture seasonality and trends in traffic flow data, they
may fail to model complex and nonlinear systems. Furthermore, they require assumptions about
the underlying data distribution (which may not always hold in practice) and are ill-posed to
address issues such as missing values in data [18]. In addition, statistical methods usually only
model the temporal component of traffic flow and neglect the spatial dimension of the traffic
flow problem. On the other hand, machine learning algorithms have shown promising results
for short-term traffic forecasting [12]. Machine learning methods can often incorporate external
factors (such as weather conditions, holidays, or special events, among others) in a more natural
way, work with missing data, or even take into account the topology of road networks. Examples
of recent techniques that can model both spatial and temporal components include can be found
in [11] but mainly include using graph neural networks. For a more detailed overview of methods
for traffic forecasting, we refer the reader to [28] and [4].

2.2 Probabilistic Forecasting

Probabilistic forecasts differ from point forecasts in that they provide a range of probabili-
ties rather than a single outcome. Because some systems are inherently uncertain, probabilistic
forecasts can greatly facilitate decision-making. Many solutions to probabilistic forecasting have
been proposed (e.g., Bayesian models, Quantile regression, and Deep Learning-based methods).
While forecasting a probability range is useful to decision-making, some models make assump-
tions about the underlying distribution of data and therefore constraining their application. For
a more detailed introduction to probabilistic forecasting methods, we refer the reader to [27].

The technique we focus on in this paper is Quantile Regression (QR) [15]. QR estimates the
conditional quantiles (groups produced by dividing a frequency distribution into equal groups)
of a response variable rather than just the conditional mean. It provides a more complete picture

1Code: https://gitlab.com/ijs-e7/traffic-qcr
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of the distribution of the response variable and can be particularly useful when the distribution
is non-normal or heteroscedastic. Unfortunately, the disadvantage of QR is that the prediction
intervals are often poorly calibrated (too small or too large), which means that the true value
may fall outside the prediction interval (e.g., for a model that predicts intervals from the 5%
quantile to the 95% quantile, the interval may or may not contain 90% of the data). To overcome
this issue, Conformal Quantile Regression (CQR) [23] has been proposed. Conformal inference is
a paradigm for creating statistically rigorous uncertainty intervals for predictive models without
any distribution assumptions, where the intervals are guaranteed to contain the ground truth
with a specified probability [1]. In regression settings, this is achieved by extending or shortening
prediction intervals at both ends by a factor based on a calibration set. While the intervals are
shortened or extended by the same margin, the entire process is considered adaptive given
the quantile regression produces prediction intervals of multiple sizes. CQR is a method that
combines QR with conformal prediction to provide prediction intervals with guaranteed coverage
probabilities (under the i.i.d. sample assumption). CQR has been successfully used in various
domains [10, 29]. For a detailed description of the conformal prediction framework, we refer the
reader to [1, 9, 6].

3 METHODOLOGY

This section provides an overview of the modeling process, including the dataset used, the
feature engineering steps, the machine learning models used, and the error metrics used to
quantify model performance.

3.1 Dataset

We use the MOL-TF dataset2 in our experiments, which consists of traffic flow data at
15-minute intervals from 2012 to 2020 using inductive loop counters installed under high-traffic
roads. Despite having altogether 190 sensors, only 30-40% of them were operational at any given
time, as were taken out of service or were malfunctioning. The dataset has unique properties,
such as irregularly sized gaps of missing data ranging from hours to years, and a lack of exact
sensor locations for older sensors which were later discontinued (i.e., removed years ago but
are still in the dataset). Therefore, when building a model, it is essential to consider these
limitations and engineer suitable features to address the challenges posed by the abovementioned
peculiarities.

3.2 Feature Engineering and Exogenous Variables

For the purpose of traffic forecasting, we created a total of 275 features. We describe the
feature types in Table 1. Among them we find frequently used features to describe time se-
ries in a tabular format (e.g., lagn or moving averagen,w), and other time-based features (e.g.,
public holiday or date features (e.g., year, whether it is a weekend or not, the day of the
week, the hour, and the minute of the day)). Among domain-specific features we may find the
quantile lagn,q, designed to capture the information from other measuring stations by incor-
porating traffic flow from them. Due to the large number of measuring station and their high
unavailability, a raw traffic count from each station would result in a large number of features

2Data available at: https://repo.ijs.si/cs/datasets/mol-traffic-data
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with missing values. For this reason, traffic flow at all measuring stations is aggregated with
quantiles, i.e., new covariates are created to represent the q-th quantile of traffic flow across
all stations. In addition, these covariates are converted into features by taking their lags. For
example, the feature quantile lag3,0.95 would indicate the 95-th quantile of total traffic flow 45
minutes ago.

Table 1: Table of features used for forecasting together with a short description.

Feature type Description

lagn Lag feature of the time-series being forecasted for different lags n. 3

moving averagen,w Moving average with different window lengths w and lags n. 4

quantile lagn,q Traffic flow divided into different quantiles q and different lags n. 5

public holiday Boolean variable describing if a given day is a holiday or not.
date features Features constructed from a date for which forecasts are being made.

3.3 Machine Learning Model

LightGBM [13] is a popular implementation of Gradient Boosted Decision Trees. It uses a
gradient-boosting technique to iteratively improve the accuracy of the model by adding new
decision trees to the ensemble. The main advantages of the LightGBM are that it can work
with missing data, supports different data types (categorical, numerical), and usually does not
require scaling of the data to achieve good results. In addition, it is a commonly used model when
dealing with data in tabular form [25] where it often outperforms other models [2]. While there
are many different machine learning models for traffic flow forecasting, LightGBM is relatively
robust, provides good performance without tuning hyperparameters, and is easy to train even in
the absence of data. We use one LightGBM model for each of the forecasting horizons separately.
Note that the calibration approach is model-independent and does not prescribe a particular
machine-learning model.

3.4 Metrics

Quantifying the performance of models is crucial for selecting which models to use. For point
forecasts, there is an extensive literature on various metrics [16] for quantifying the quality of
forecasts. For quantile forecasts, on the other hand, the selection of metrics is a more complex
problem. In quantile regression, the metrics must take into account how often the true value
falls within the predicted interval and how wide the interval is. Ideally, one would like to have
the smallest possible interval sizes while ensuring that the true values fall within the predicted
range in most cases. For this reason, we use two metrics that capture both of the described
properties. The mean prediction interval width (MPIW) [24, 14] describes the length of the
predicted interval, while the prediction interval coverage probability (PICP) [17, 14] quantifies
how often the true value falls outside the predicted range. Thus, one would like to minimize the

3lagn: {n ∈ N | (1 ≤ n < 100) ∨ (n = 100 + 4k ∧ 0 ≤ k < 25) ∨ (n = 200 + 16k ∧ 0 ≤ k < 32)}
4moving averagen,w: w ∈ {3, 6, 12, 24, 48, 96}, n ∈ {1, 2, 3, 6, 12, 24, 48, 96}
5quantile lagn,q: q ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}, n ∈ {1, 2, 3, 6, 12, 24, 48, 96}
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MPIW while keeping the PICP close to the desired coverage probability. Both the MPIW and
PICP metrics are described by the following equations:

MPIWh =
1

n

n∑
i=0

∣∣∣yui,h − yli,h

∣∣∣ (1)

PICPh =
1

n

n∑
i=0

Ii,h; Ii,h =

{
0, yi,h ∈ [yui,h, y

l
i,h]

1, yi,h /∈ [yui,h, y
l
i,h]

(2)

Here, yi,h is the observed number of vehicles while yli,h and yui,h are the predicted lower and
upper bound for instance i and forecasting horizon h.

3.5 Forecasting Horizon

Many studies [3, 19], use prediction horizons that range from a few minutes to a few hours
in advance. In this study, we performed forecasting at multiple time horizons. In particular, we
considered forecasting up to eight hours ahead, considering 15-minute intervals. By doing so, we
consider we could generate accurate forecasts and eventually support effective decision-making.

4 RESULTS

4.1 Experimental Design

Our dataset was split into two distinct sets - the training set and the test set - based on
chronological order. The training set consists of the oldest data from 2012 to 2019, while the
test set contains the most recent examples from 2019 to 2022. To generate conformal predictions,
we also divided the training and testing data into two sets - one for training the machine learning
algorithm and one for calibration. In this case, the calibration set was limited to 2018-2019, while
the models were trained with data between 2012-2018. When creating a prediction interval, one
must select the desired coverage. In our scenario, we chose a coverage probability of 90%. This
means that when future forecasts are made, the actual number of vehicles should be within the
prediction interval of approximately 90% of instances (i.e., PICP ≈ 90%). As described in [8],
the training process is performed in a global setting, i.e., using a single model trained on all time
series data for a given time horizon. This approach eliminates the need for separate models for
each measuring station since the same model is trained for the entire dataset.

It is a common practice in forecasting to train a separate model for each forecast horizon.
In our case, this means training 32 separate models, each of which focuses on forecasting a
particular time horizon in the future. The models are calibrated considering the conformal
framework for the forecasting horizon of interest.

To obtain reliable performance estimates, the algorithms were trained ten times, and the
resulting tables report the mean values of MPIW and PICP. Given that transforming the fore-
casting problem into a tabular format generates approximately 43 million instances, the training
process can be extremely slow. Therefore, to mitigate this issue, we used only 5% of the data. For
this study, we used the default LightGBM parameters without optimizing the hyperparameters.

Several software tools were used in our study, such as the numpy [7], darts [5], sklearn [22],
MAPIE [26], and pandas [20].
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4.2 Probabilistic Forecasts With Different Horizons

Here we compare the effectiveness of QR and CQR in generating prediction intervals for
different forecast horizons. Table 2 illustrates the comparative performance of QR and CQR for
horizons between fifteen minutes and eight hours into the future (aggregated across all measuring
stations). It can be seen that QR often produces prediction intervals that are too narrow and do
not reach the desired 90% coverage threshold on the test dataset. For example, when predicting
values for 8 hours ahead, the ordinary intervals from QR only encompass the true value 83.9%
of the time, raising concerns about the effectiveness of the model even when trained to produce
intervals with a 90% coverage rate. In contrast, CQR produces prediction intervals closer to the
90% requirement and is therefore better calibrated. The discrepancy between QR and CQR is
more pronounced at horizons greater than three hours, as uncalibrated prediction intervals are
far from the required 90% coverage. The importance of using calibrated models that can produce
accurately calibrated prediction intervals is emphasized, as many QR models overestimate their
confidence level and can produce narrower prediction intervals. On the other hand, CQR can
adjust prediction intervals to be much closer to the desired coverage even for previously unseen
data.

4.3 Forecasting Accuracy for different stations

It is important not only to compare QR and CQR for different horizons, but also to evaluate
the accuracy of their predictions for different measuring stations. Figure 1 illustrates a com-
parison of prediction interval calibration for different measuring stations. It can be observed
that QR produces prediction intervals that are often too narrow for some stations. In extreme
cases, the resulting intervals only achieve coverage of about 40% instead of the intended 90%.
Calibrated models generate prediction intervals that are much closer to the specified 90% com-
pared to uncalibrated models. This highlights the main advantage of the conformal prediction
framework, where prediction intervals can be adjusted to produce better prediction intervals.
On the other hand, the drawbacks of a conformalized prediction framework are also evident
from the above figure. Since CQR uses only a single global constant value to adjust the initial
prediction interval, the intervals can often be adjusted even if it is not necessary. This can be
seen in Figure 1, where some QR intervals for individual stations are closer to 90% compared to
CQR prediction intervals. In summary, although the prediction intervals obtained with CQR for
different time horizons achieve the desired 90% conditional coverage, individual measurement
stations may exceed or fall below the 90% desired coverage threshold.

4.4 Example of Forecasts With Prediction Intervals

For clarity, we give examples of forecasts and their prediction intervals. Figure 2 shows three
examples of prediction intervals obtained with regular QR and CQR. While conclusions from a
few hand examples can be misleading, the selected examples show that both methods produce
similar prediction intervals, with CQR generally having slightly larger prediction intervals com-
pared to QR. In addition, CQR by default can produce prediction intervals that are negative.
Since traffic flow cannot be negative, such values can simply be set to zero. In our case, we
intentionally do not perform such a correction, even though this would narrow the prediction
intervals of the CQR in some cases.

6



First A. Author, Second B. Author and Third C. Author

Table 2: Performance comparison of the MPIW and PICP metrics between QR and CQR over different
forecasting horizons. Note that PICP should be close to the 90% specified coverage.

Horizon QR-PICP CQR-PICP QR-MPIW CQR-MPIW
min [%] [%]

15 0.842214 0.898796 28.955776 31.622821
30 0.841815 0.897364 31.433076 33.867398
45 0.841924 0.898461 33.511282 35.367419
60 0.839802 0.899384 34.796558 36.555611
75 0.840788 0.897814 36.009832 37.244738
90 0.840183 0.898972 37.118646 38.200107
105 0.842494 0.898627 37.156039 38.544909
120 0.842322 0.899264 37.578008 38.580316
135 0.842541 0.900107 36.834235 38.046392
150 0.840340 0.899556 38.856038 39.960259
165 0.839329 0.898564 39.835607 41.228992
180 0.841134 0.898303 40.948913 42.052492
195 0.838409 0.899326 41.967217 42.754069
210 0.839587 0.898832 43.130416 43.604264
225 0.839139 0.899784 43.405047 44.511488
240 0.839413 0.899970 43.847630 44.854851
255 0.838934 0.900270 43.710950 44.887580
270 0.839090 0.899911 44.157199 45.124140
285 0.838359 0.899595 43.715106 44.945387
300 0.836904 0.900029 43.214179 44.875615
315 0.835988 0.900483 42.233077 44.183448
330 0.839534 0.901006 42.033808 44.011103
345 0.839875 0.901768 40.968346 43.547498
360 0.838058 0.900614 40.497423 42.387177
375 0.840325 0.900578 38.615834 40.822243
390 0.839126 0.900392 40.283268 42.346649
405 0.838463 0.900279 40.962669 43.716520
420 0.841016 0.900265 41.647127 44.431421
435 0.840530 0.900136 42.330318 44.767469
450 0.839703 0.900363 43.539172 45.840313
465 0.837991 0.899892 44.291754 46.519851
480 0.839280 0.900267 44.413916 46.800569

5 CONCLUSIONS

This research shows how CQR can be used to produce traffic forecasts with an associated
uncertainty range. Furthermore, we demonstrate how the conformal prediction framework allows
for creating well-calibrated forecasts. Accurate prediction intervals are particularly important
in decision-making processes, where the consequences of incorrect predictions can be significant.
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Figure 1: PICP for different traffic measuring stations obtained with regular QR and CQR. Only stations
that appear in the test set are shown.

Our future work will involve testing a variety of machine learning models that can more
effectively use the structure of the road network and capture time dependence without having
to convert the data into a tabular format. We also plan to conduct more extensive feature
engineering to improve the accuracy and reliability of our predictions. This includes exploring
different feature selection methods, incorporating additional domain-specific features, and ex-
perimenting with feature engineering techniques that can capture the spatio-temporal dynamics
of traffic patterns.
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Figure 2: Example of prediction intervals for QR (red) and CQR (blue) for three different stations
together with the actual traffic flows (green).
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