
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

LIGHTWEIGHT AMG PRECONDITIONERS FOR CFD
SIMULATIONS ON SYMMETRIC DOMAINS

Àdel Alsalti-Baldellou1,2, Carlo Janna3, Xavier Álvarez-Farré4,
and F. Xavier Trias5

1 Department of Information Engineering,
University of Padova, Via Giovanni Gradenigo, 6b, 35131 Padova PD, Italy

adel.alsaltibaldellou@unipd.it

2 Termo Fluids SL
Carrer de Maǵı Colet, 8, 08204 Sabadell (Barcelona), Spain

3 Department of Civil, Environmental and Architectural Engineering,
University of Padova, Via Francesco Marzolo, 9, 35131 Padova PD, Italy

4 High-Performance Computing Team, SURF
Science Park 140, 1098 XG Amsterdam, The Netherlands

5 Heat and Mass Transfer Technological Center, Polytechnic University of Catalonia
Carrer de Colom, 11, 08222 Terrassa (Barcelona), Spain

Key words: Spatial symmetries, Multigrid reduction, AMG, Poisson’s equation, SpMM

Summary. Divergence constraints appear in the governing equations of many physical phe-
nomena, often leading to a Poisson equation whose solution is one of the most challenging parts
of incompressible CFD codes. Algebraic Multigrid (AMG) is likely the most effective precondi-
tioner for Poisson’s equation. Its effectiveness stems from the combined roles of the smoother,
which dampens high-frequency error components, and the coarse-grid correction, which reduces
low-frequency modes. This work presents an AMG reduction framework to leverage spatial
symmetries, often present in academic and industrial configurations, for making AMG more
compute-intensive. In particular, we introduce an aggressive coarsening to the top level of the
multigrid hierarchy, reducing the setup, memory footprint and application costs of the top-level
smoother. Numerical experiments on a model problem confirm the advantages of the resulting
preconditioner.

1 INTRODUCTION

Divergence constraints are commonly found in the governing equations of many physical
problems, usually adhering to fundamental conservation principles like mass or electrical charge
conservation, and usually result in a Poisson equation for a scalar potential, making its solution
play a critical role in numerous scientific and engineering fields, including computational fluid
dynamics (CFD), linear elasticity and electrostatics. Indeed, it is typically one of the most
challenging and costly parts of scientific simulation codes.



Àdel Alsalti-Baldellou, Carlo Janna, Xavier Álvarez-Farré, and F. Xavier Trias

Over the years, the most common approach to solving Poisson’s equation has been through
iterative methods relying on Krylov subspaces [1]. These methods are easy to implement and
parallelise, as they only require basic linear algebra operations such as matrix by vector prod-
ucts, scalar products, and vector updates. However, they are very sensitive to the properties of
the problem at hand and generally require potent preconditioners to be effective [2, 3]. Precondi-
tioners based on incomplete factorisations were widely used in the beginning of numerical linear
algebra. Nevertheless, the rise of parallel computers caused them to lose popularity due to their
sequential nature. Instead, preconditioners based on approximate inverses gained attraction
because their application solely requires the easily parallelisable sparse matrix-vector product
(SpMV). However, they are not optimal because, as the problem grows, so does the number of
iterations required to attain the same accuracy.

This problem worsens nowadays, as extreme-scale linear systems must be solved on massively
parallel supercomputers, making single-level preconditioners require excessive iterations. Mul-
tilevel preconditioners like Geometric Multigrid (GMG) or Algebraic Multigrid (AMG) [4] help
overcome the problem of scalability. Indeed, thanks to the effective combination of relaxation
and coarse-grid correction, they often solve a given PDE with a number of iterations indepen-
dent of the mesh size. Many freely available multigrid packages exist, such as Hypre [5], Trilinos
[6], or PETSc [7], providing excellent implementations.

It is important to recognise the current hardware limitations in order to devise algorithms
that overcome them. For instance, the low arithmetic intensity of most sparse linear algebra
kernels and the limited memory available in massively parallel accelerators. This work extends
past strategies to leverage spatial symmetries [8, 9, 10], often present in academic and industrial
configurations, to make AMG lighter and more compute-intensive. The resulting preconditioner
relies on imposing a consistent ordering that leads to a multigrid reduction framework. In
particular, we introduce an aggressive coarsening to the top level of the multigrid hierarchy,
reducing the setup, memory footprint and application costs of the top-level smoother.

The remaining sections of this work are organised as follows. Section 2 derives the proposed
AMG reduction framework. Section 3 discusses its practical implementation. Section 4 analyses
the benefits of our proposal by comparing it with a standard AMG in a model problem, and
section 5 gives some concluding remarks.

2 AMG REDUCTION FRAMEWORK

AMGR emerges from applying a non-overlapping domain decomposition, which must align
with the specific problem to fully leverage its benefits. Figure 1 illustrates a domain partitioned
into nb subdomains, along with the corresponding classification of unknowns. These unknowns
are divided into inner (Ω1 ·∪ . . . ·∪ Ωnb

) and interface (Γ1 ·∪ . . . ·∪ Γnb
) categories.

Figure 1: Simplified example of a non-overlapping domain decomposition.

2



Àdel Alsalti-Baldellou, Carlo Janna, Xavier Álvarez-Farré, and F. Xavier Trias

Irrespective of the chosen decomposition, the quantity of inner unknowns should significantly
exceed the number of interface unknowns, i.e., ninn ≫ nifc. Furthermore, by rearranging the
coefficient matrix so that inner unknowns are indexed before interface unknowns, it adheres to
the following block structure:

A =

(
K̄ B̄
B̄T C̄

)
∈ Rn×n, (1)

where K̄ ∈ Rninn×ninn , B̄ ∈ Rninn×nifc , C̄ ∈ Rnifc×nifc .
Although we have not yet discussed how to define appropriate decompositions, the structure

of eq. (1) suggests constructing an AMG reduction by designating only the interface unknowns
as coarse. However, this approach leads to excessively large fine-coarse distances. To achieve
accurate prolongation, some inner nodes must be converted into coarse by ensuring a maximum
interpolation distance k.

For simplicity, from this point forward, the terms inner and interface will refer not to the
original decomposition (regardless of its specifics) but to their expanded versions. Similarly,
nifc will represent the enlarged interface, while ninn will refer to the remaining inner unknowns.
With this, we can introduce the following prolongation:

P :=

(
W̄
Inifc

)
∈ Rn×nifc , (2)

where W̄ ∈ Rninn×nifc and Inifc
∈ Rnifc×nifc . The coarsening introduced by the AMG reduction

becomes more aggressive as k increases. However, this improvement comes at the cost of lowering
the accuracy of P . Numerical experiments have shown that selecting k = 2 offers an optimal
trade-off.

The other components of the AMG reduction framework follow naturally. Firstly, the top-
level smoother is defined as:

M−1 :=

(
M̄−1

K

M̄−1
C

)
∈ Rn×n, (3)

where M̄−1
K ≃ K̄−1 and M̄−1

C ≃ C̄−1. In eq. (3), we can ignore A’s off-diagonal blocks without
harming the overall quality of AMGR.

On the other hand, the reduced operator, Ac ∈ Rnifc×nifc , reads:

Ac := P T

(
K̄ B̄
B̄T C̄

)
P = W̄ T K̄W̄ + W̄ T B̄ + B̄T W̄ + C̄, (4)

whose inverse is approximated through a standard AMG, M−1
c ≃ A−1

c , therefore defining the
following error propagation:

EAMGR = (In −M−T )ν2(In − PM−1
c P T )(In −M−1)ν1 , (5)

where ν1 and ν2 correspond to the number of pre-smoothing and post-smoothing steps, respec-
tively.

It is important to emphasize that, irrespective of the domain decomposition, AMGR in-
troduces an aggressive coarsening strategy that reduces the cost of the two-grid correction.

3



Àdel Alsalti-Baldellou, Carlo Janna, Xavier Álvarez-Farré, and F. Xavier Trias

Furthermore, implementing a suitable inner-interface partitioning provides additional numerical
and computational benefits.

In particular, CFD simulations on domains with reflection symmetries or composed of re-
peated “substructures” (such as the plates of a finned-tube heat exchanger) allow assigning a
different subdomain to each substructure, results in a coefficient matrix that satisfies eq. (1).
Moreover, applying the same ordering within each subdomain ensures the following property:

K̄ = Inb
⊗K and M̄−1

K = Inb
⊗M−1

K , (6)

where K ∈ Rninn/nb×ninn/nb stands for the restriction of K̄ to the substructure, and M−1
K ≃ K−1.

Figure 2: Adequate domain decomposition of periodic structures. Dashed lines identify the interface.

Equation (6) is particularly advantageous because it enables the assembly of K and M−1
K

rather than the entire K̄ and M̄−1
K . As a result, AMGR significantly reduces the setup costs and

memory footprint of M̄−1
K by a factor of nb, which is especially beneficial given the resource de-

mands of the top-level smoother, M−1, in a multigrid hierarchy. Additionally, the decomposition
in eq. (6) enables replacing the standard SpMV by K̄:

SpMV:

 y1
...

ynb

 =

K
. . .

K


 x1

...
xnb

 ∈ Rninn (7)

with the more compute-intensive sparse matrix-matrix product (SpMM):

SpMM: (y1 . . . ynb
) = K(x1 . . . xnb

) ∈ Rninn/nb×nb . (8)

The fact that SpMM reads K nb fewer times makes it significantly more compute-intensive, and
since SpMV and SpMM are typically memory-bound kernels, such an increase of the arithmetic in-
tensity results in significant speed-ups. Importantly, SpMM can also be utilized on M̄−1

K when em-
ploying smoothers that operate via SpMV, such as Factored Sparse Approximate Inverse (FSAI).

3 PARALLEL IMPLEMENTATION

Discretising complex geometries is simplified by exploiting spatial symmetries, as AMGR only
necessitates meshing the base mesh, which, with nb subdomains, corresponds to a 1/nb portion of

4



Àdel Alsalti-Baldellou, Carlo Janna, Xavier Álvarez-Farré, and F. Xavier Trias

the entire domain. The implementation then expands the base mesh by applying a symmetry-
aware ordering and taking advantage of the resulting operators’ structure. Consequently, it
is not needed to create perfectly symmetric meshes, and significant savings in memory and
computational resources are granted.

Similarly, to replace SpMV with SpMM, a consistent domain partitioning is required. This
involves distributing the base mesh across the available computing resources and extending such
partitioning to the remaining subdomains applying each of the symmetries. Figure 3 illustrates
this process on a 2D problem.

Figure 3: Adequate partitioning of a mesh with 2 reflection symmetries.

The proposed methods have been implemented within the MATLAB interface of Chronos [11],
a sparse linear algebra library tailored for parallel computing environments. Chronos offers
iterative solvers for linear systems and eigenvalue problems, along with advanced preconditioners
based on approximate inverses and AMG. The library is developed in C++ with a strong object-
oriented architecture, facilitating both its development and maintenance. It employs a hybrid
programming model, utilizing MPI for inter-node communication, and OpenMP and CUDA to
harness the capabilities of manycore processors and GPU accelerators, respectively.

4 NUMERICAL EXPERIMENTS

To demonstrate the behaviour of AMGR, let us consider the following Poisson’s equation
with homogeneous Neumann boundary conditions, representative of the problems encountered
in incompressible CFD simulations:

−∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= f in Ω

∂u

∂n
= 0 on ∂Ω

(9)

where f is a random field that satisfies the compatibility condition
∫∫∫

Ω f dV = 0. The domain
used for the model problem is a unit cube, discretized with a standard 7-point stencil and
incorporating the following hyperbolic stretching at the walls:

xi =
1

2

1 +
tanh

(
γx

(
2 (i−1)

nx
− 1

))
tanh (γx)

 ∀i ∈ {1, . . . , nx + 1}, (10)

applied identically in the y- and z-directions with γx = γy = γz = 1.5.

5



Àdel Alsalti-Baldellou, Carlo Janna, Xavier Álvarez-Farré, and F. Xavier Trias

Table 1 presents the results obtained with AMGR on eq. (9). They correspond to a MATLAB
implementation using k = 2, Dynamic Pattern Least Squares (DPLS) [12] and energy minimi-
sation [13]. Conversely, the AMG applied to the reduced operator used a PMIS coarsening [14],
Extended+I interpolation [15] and an adaptive-pattern FSAI smoother [12]. As it can be seen,
adopting the aggressive coarsening that spatial symmetries induce does not harm convergence
and allows for the computational advantages of replacing SpMV with SpMM.

Table 1: Results on the model problem with n = 643 and comparing Conjugate Gradients [1] precondi-
tioned with AMG and AMGR.

iterations

preconditioner nb = 1 nb = 2 nb = 4 nb = 8

AMG 6 na na na
AMGR 6 9 9 9

5 CONCLUSIONS

This work introduced an AMG reduction framework tailored to exploit spatial symmetries
frequently encountered in academic and industrial CFD simulations. By incorporating an ag-
gressive coarsening strategy at the top level of the multigrid hierarchy, AMGR, the proposed
method, reduces the setup costs, memory footprint, and application costs associated with the
top-level smoother. The numerical experiments conducted on a model problem demonstrate
that this approach does not harm AMG’s excellent convergence despite enabling significant
computational advantages.

Indeed, by implementing a consistent domain decomposition and a symmetry-aware ordering,
the standard SpMV can be replaced with the more compute-intensive SpMM, enabling significant
memory and computational savings. This advantage is crucial given the memory-bound nature
of sparse linear algebra kernels, especially on modern parallel computing architectures. Future
work focus on tackling its parallel implementation and testing AMGR on industrial applications.

ACKNOWLEDGEMENTS

This project was partially funded by the competitive R+D project RETOtwin (PDC2021-
120970-I00), given by MCIN/AEI/10.13039/501100011033 and European Union Next Gener-
ationEU. Numerical experiments were conducted on the JFF cluster at the Heat and Mass
Transfer Technological Center. The authors thankfully acknowledge these institutions.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, second ed., 2003.

[2] Y. Saad and H. A. V. d. Vorst, “Iterative solution of linear systems in the 20th century,”
Journal of Computational and Applied Mathematics, vol. 123, pp. 1 – 33, 10 2000.

[3] M. Benzi, “Preconditioning Techniques for Large Linear Systems: A Survey,” Journal of
Computational Physics, vol. 182, no. 2, pp. 418 – 477, 2002.

6



Àdel Alsalti-Baldellou, Carlo Janna, Xavier Álvarez-Farré, and F. Xavier Trias

[4] A. S. Ulrich Trottenberg, Cornelius W. Oosterlee, Multigrid. Elsevier, 2000.

[5] “hypre: High performance preconditioners.” https://llnl.gov/casc/hypre, https://
github.com/hypre-space/hypre.

[6] L. Berger-Vergiat, C. A. Glusa, J. J. Hu, M. Mayr, A. Prokopenko, C. M. Siefert, R. S.
Tuminaro, and T. A. Wiesner, “MueLu multigrid framework.” http://trilinos.org/

packages/muelu, 2019.

[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F.
Smith, S. Zampini, and H. Zhang, “PETSc Web page.” http://www.mcs.anl.gov/petsc,
2015.

[8] A. Alsalti-Baldellou, X. Álvarez Farré, F. X. Trias, and A. Oliva, “Exploiting spatial symme-
tries for solving poisson’s equation,” Journal of Computational Physics, vol. 486, p. 112133,
8 2023.

[9] A. Alsalti-Baldellou, X. Álvarez Farré, G. Colomer, A. Gorobets, C. D. Pérez-Segarra,
A. Oliva, and F. X. Trias, “Lighter and faster simulations on domains with symmetries,”
Computers & Fluids, vol. 275, p. 106247, 5 2024.

[10] A. Alsalti-Baldellou, C. Janna, X. Álvarez Farré, and F. X. Trias, “Exploiting symmetries
for preconditioning poisson’s equation in CFD simulations,” pp. 1–9, ACM, 6 2023.

[11] G. Isotton, M. Frigo, N. Spiezia, and C. Janna, “Chronos: A General Purpose Classical
AMG Solver for High Performance Computing,” SIAM Journal on Scientific Computing,
vol. 43, no. 5, pp. C335–C357, 2021.

[12] V. A. Paludetto Magri, A. Franceschini, and C. Janna, “A Novel Algebraic Multigrid Ap-
proach Based on Adaptive Smoothing and Prolongation for Ill-Conditioned Systems,” SIAM
Journal on Scientific Computing, vol. 41, pp. A190–A219, Jan. 2019.

[13] C. Janna, A. Franceschini, J. B. Schroder, and L. Olson, “Parallel Energy-Minimization
Prolongation for Algebraic Multigrid,” SIAM Journal on Scientific Computing, vol. 45,
no. 5, pp. A2561–A2584, 2023.

[14] H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity in parallel algebraic
multigrid preconditioners,” SIAM Journal on Matrix Analysis and Applications, vol. 27,
no. 4, pp. 1019–1039, 2006.

[15] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, “Distance-two interpolation for
parallel algebraic multigrid,” Numerical Linear Algebra with Applications, vol. 15, no. 2-3,
pp. 115–139, 2008.

7

https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
https://github.com/hypre-space/hypre
http://trilinos.org/packages/muelu
http://trilinos.org/packages/muelu
http://www.mcs.anl.gov/petsc

	INTRODUCTION
	AMG REDUCTION FRAMEWORK
	PARALLEL IMPLEMENTATION
	NUMERICAL EXPERIMENTS
	CONCLUSIONS

