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Abstract. The cerebrospinal fluid flow in a brain ventricular system is analyzed by the numerical ap-
proach employing a lattice-Boltzmann (LB) method. The cerebrospinal fluid, which surrounds the hu-
man brain and spinal cord, fills the cerebral ventricles as well as the cranial and subarachnoid spaces.
Diseases in a central nerve system disrupt the flow circulation which influences on a number of vi-
tal functions. A computational fluid dynamics technique is used to determine the member geometry
impact on the flow motion. The numerical analysis focuses on building a simulation-based basis for
testing/optimizing therapeutical methods and understanding the pathophysiology. Magnetic resonance
(MR) imaging is exploited to obtain realistic geometries in a brain ventricular system. The computa-
tional domain is discretized by a hierarchical Cartesian octree mesh. The numerical procedure based on
an LB method overcomes the difficulties raised by typical finite-difference and finite-volume methods
on high-performance computing (HPC) systems. An oscillating flow boundary condition is defined to
resolve the kinetic behavior of cerebrospinal fluid in a cardiac cycle. The three-dimensional structures
captured in the cerebral ventricles show a qualitative agreement with an observation based on an MR
velocity mapping. The simulation on a HPC system is able to provide further insights into the transport
from brain to spinal cord.

1 INTRODUCTION

The cerebrospinal fluid (CSF) fills the cerebral ventricles as well as the cranial and subarachnoid spaces
(SAS). Circulating in the brain and the spinal cord, the CSF transports nutrients and neuroendocrine
substances and removes toxic chemicals to preserve the healthy environment inside a brain1. The flow
pulsates through two lateral ventricles, which are connected with the third ventricle. A thin channel, i.e.,
the aqueduct of Sylvius, communicates with the third and the fourth ventricle. The CSF is transferred
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from the fourth ventricle to the cranial and spinal SAS. Diseases in the central nerve system immediately
impacts on a number of vital functions, e.g., disruption in CSF circulation. In clinic the intracranial
pressure (ICP) is monitored in neurosurgical practice since the ICP variation in time reflects pathological
symptoms associated with CSF pressure changes. The values are used in diagnosis and the treatment of
diseases inside the cerebral flow network2, 3. The baseline pressure level is affected by periodic compo-
nents coming from the cardio-respiratory activity. Fluctuation of mean arterial pressure with heart rate
causes small amplitude rapid pulsation, and respiration causes larger amplitude fluctuations of lower fre-
quency. ICP is completely described only by information about both the baseline level and the pulsating
components2. Several prominent disease states deduce from disorders of the CSF dynamics. This in-
cludes, e.g., an increased intracranial pressure by hydrocephalus4 or decreases in the flow and pulsatility
by Chiari malformations5. However, the clinical decision making is difficult when the symptom occurs
with no disease characteristics as observed in normal pressure hydrocephalus. Unfortunately, the specific
etiologies and the biomechanical interactions between the components of the central nerve system (CNS)
are hardly understood under abnormal fluid conditions.

The basic physiologic concept about the CSF and ICP started already in the early 19th century. So called
the Monro-Kellie doctrine6, 7 is formalized as the fundamental concept reads

VCSF +VBlood +VBrain +VOther =VIntracranial space = constant, (1)

where VCSF is volume of CSF, VBlood is volume of blood, VBrain is volume of brain, and VOther is volume
of any abnormal component, such as a tumor. This equation provides a general framework for under-
standing pathologic causes of elevated ICP and also its treatments since 1950s8. For adults, the volume
of cerebrospinal fluid is 165 mL, which varies from 62 mL to 267 mL, in cranium. About 99% of CSF
is water. The water solution contains approximately 0.3% plasma proteins, and is normally free of red
blood cells. The major portion of fluid is produced by the choroid plexus, i.e., a network of blood vessels
within sections of the brain ventricles. The choroid plexus is present throughout the ventricular system
except for the cerebral aqueduct and the frontal and occipital horns of the lateral ventricles9, 10. The
CSF production starts from a filtered form of plasma with movement guided by a difference in pressure
between the blood in the capillaries and the interstitial fluid. Afterwards, this fluid needs to pass through
the epithelium cells lining the choroid plexus into the ventricles. An active process requires the transport
of sodium, potassium and chloride that draws water into CSF by creating osmotic pressure. And this
transcellular fluid is constantly absorbed again such that only a certain amount of fluids is present at
any one time. An equivalent circuit model of the flow network described the formation, storage, and the
absorption at a given intracranial pressure11. According to this model the intracranial pressure value can
be determined by the CSF formation current, a single resistance element, and the pressure in the dural
sinuses. As introduced in the previous slides, the ICP signal has a baseline value and the amplitude of
the fluctuations remain almost constant at a normal condition.

The Monro-Kellie hypothesis implies that a brain disease due to abnormal components makes reciprocal
changes in the volumes of brain, blood, and cerebrospinal fluids to preserve the ICP. The main motivation
of the current study is to determine the CSF motion based on the fundamental hypothesis. Furthermore,
in surgical practice the external or the internal drainage is chosen as treatment to control the high ICP
values12. Although doctors also use other methods with medication, the treatment of hypertension is
typically mechanical for the fluid volume. The detailed fluid dynamic analysis is able to provide a better
understanding of the CSF flow behavior in the complex brain ventricular system. Computational fluid
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dynamics can be used to quantify the functional interactions of the members of the ventricular system.

In the aforementioned clinical applications8, 11, 12 the fluid circulation models consider the pressure dy-
namics and the dynamics of CSF and cerebral blood flow. The quantitative assessment provides robust
evidences in judging a patient care when the clinical parameters are subtle and ambiguous1, 13. The fluid
dynamics model exploited in the numerical analyses is based on the fundamental conservation law of
mass, momentum, and chemical reactions14–16. The approaches using computational fluid dynamics
(CFD) can simulate realistic CSF flows to predict the patient-specific scenarios. The present study aims
to establish a basis to test and optimize a clinical therapy via the anatomically accurate simulation based
on a robust numerical procedure.

The three-dimensional images obtained by magnetic resonance imaging (MRI) provide the structures of
ventricles and the SAS. For a normal healthy human the CSF speed ranges in several centimeters per
second. The typical Reynolds number is in the order of O(102). However, the physiological mechanisms
of the CSF circulation develop vortical flow structures which exhibit a turbulent-like motion induced by
the difference in systolic and diastolic velocities and the interactions of micro-structures with fluids15, 16.
To resolve the micro-structures, like nerve roots and trabeculae, a short spinal segment already demands
a significant increase of the computational cost15. These fluid dynamic and the computational difficulties
obstruct the development of a therapeutic basis in medical diagnosis.

In the present numerical study, the complex anatomical geometries as well as the CSF pulsatility are
tackled with the high-resolution computations using the high-performance computing (HPC) technique.
The numerical solutions of transitional phases will be validated on the quantitative assessment based on
literature13, 17. The impact of pulsatility on the flow dynamics will be investigated by a generic flow
configuration such that the fundamental findings can be applied to other engineering problems. The
outcomes of this study have the potential to be expanded to various areas within fluid mechanics and the
numerical models of CNS. Together with the clinical researches the high-resolution CFD analysis will
enable a better understanding of the pathophysiological basis of a number of diseases causing dysfunction
of CSF circulation.

The structure of the paper is as follows. In section 2 the numerical method and the parallel mesh gen-
eration are described. Then, the geometries obtained by MR image manipulation in section 3 and the
flow configuration in section 4 are defined. Subsequently, the numerical result of the high resolution
numerical method is discussed in section 5. Finally, the major findings are summarized in section 6.

2 NUMERICAL METHODS

2.1 Lattice-Boltzmann method

The simulation of CSF flows is performed with a lattice-Boltzmann (LB) method in the quasi-
incompressible flow regimes. By solving the microscopic distribution of the fluid particles the LB
method can determine flow fields in a simpler manner than the typical finite-difference and finite-volume
approaches. The LB algorithm is completely local operation and its locality ensures a massive paral-
lelism on the high-performance computing (HPC) system. The LB method is validated in generic flow
configurations18, 19 and has been applied to bio-fluid mechanical problems20, 21.

In the single-relaxation-time (SRT) LB method, the Boltzmann equation with the Bhatnagar-Gross-
Krook (BGK) approximation of the right-hand-side collision term22 is solved for the particle probability
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distribution functions fi (PPDFs) in a discretized form

fi(x+ξi∆t, t +∆t) = fi(x, t)−ωSRT ( fi(x, t)− f eq
i (x, t)), (2)

where x = (x1,x2,x3)
T and ξi = (ξ1,ξ2,ξ3)

T are the position and molecular velocity vectors, t is the time
and ∆t its increment. The discrete Maxwellian distribution function f eq

i is determined by

f eq
i (x, t) = ρtp

[
1+

uaξia

c2
s

+
uaub

2c2
s
·
(

ξiaξib

c2
s
−δab

)]
. (3)

This discretized formulation consists of a fluid density ρ, direction-dependent weighting factors tp, an
isothermal speed of sound cs = 1/

√
3, velocity components ua and ub of the fluid velocity vector u, and

the Kronecker delta δab with a,b ∈ {1,2,3}. The quantity ωSRT is the relaxation factor

ωSRT =
c2

s

ν+∆tc2
s/2

(4)

with viscosity ν. The parameter i in Eqs. (2) and (3) is chosen by the D3Q27 discretization scheme23

with 27 direction in a three dimensional flow field. The macroscopic variables can be obtained from the
moments of the PPDFs24

ρ = ∑
i

fi(x, t) (5)

ρua = ∑
i

ξia fix, t) (6)

ρ(e+u2
a) =

1
2 ∑

i
ξ

2
ia fi(x, t) (7)

ρuaub + pδab−σab = ∑
i

ξiaξib fi(x, t), (8)

where the pressure can be obtained from
p = ρc2

s . (9)

The computations are performed in non-dimensional space. The non-dimensional molecular velocity
components ξia = ξ̃ia/ξ̃0 are obtained from the dimensional molecular velocity components ξ̃ia and the
reference molecular velocity ξ̃0. The non-dimensionalization of the density ρ = ρ̃/ρ̃0 uses the reference
density ρ̃0. The reference fluid velocity U0 in the simulation is obtained from the Mach number Ma =
U0/cs used in the LB simulation. The viscosity in the simulation is obtained by means of the Reynolds
similarity, i.e, the Reynolds number Re =U0 L̃/ν̃ with reference velocity magnitude U0, reference length
L̃ and fluid viscosity ν̃ are used to obtain the non-dimensional viscosity via

ν = ν̃ ·Ma · cs

U0
· L

L̃
, (10)

where L = L̃/∆x̃. The relation of the pressure uses Eq. (9) for conversion. All results presented in Sec. 5
are in their non-dimensional form.
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2.2 Grid generation

A hierarchical Cartesian computational mesh is generated using the massively parallel method presented
in25. That is, each message passing interface (MPI) process initially generates a cube, in the following
referred to as cell, around the geometry with an edge length of the maximum extent of the geometry in the
three Cartesian coordinate axes. Subsequently, this cube is subdivided into eight child cells constituting
an octree with parent-child relationships between the initial cell on level l0 and its descendants on level
l1. Cells outside the geometry are identified and removed from the tree. The subdivision process then
recursively continues the refinement up to a user-defined level lm. On lm, all levels l j ( j < m) are removed
and a Hilbert curve is placed in the remaining cells. The computational mesh is then equally distributed
among the MPI processes by cutting the Hilbert curve with respect to the Hilbert identifier. Thereby,
each process keeps only those cells that have been assigned to it.

In a parallel algorithm each MPI process subsequently starts to continue the refinement up to a user-
defined level ln. Finally, neighborhood information across MPI ranks is globally restored and a cell
ordering is introduced following the Hilbert curve on level lm and a z-ordering, i.e., a depth-first ordering,
for all levels lk (m < k ≤ n). Process imbalances are treated by a load-balancing technique. For further
details, the reader is referred to25. The geometry of brain ventricles is obtained by manipulation of MRI
scans. The procedure of medical images is described in the following section 3.

3 GEOMETRY

The flow simulation of a brain ventricular system is performed to establish a basis for supporting the
diagnostic procedure. The understanding of pathology and the biofluid dynamics is able to improve
the therapeutic methods. In the flow simulation the geometry of ventricles and subarachnoid space is
obtained by segmentation of cerebrospinal fluid regions. The fluid is identified by the T1-weighted MRI
scans shown in Fig. 1. The MRI scan using the SIMENS Magnetom-Skyra examined the main cranial
nerves region of a normal adult. The personal data is anonymized. The three-dimensional MRI scan

Figure 1: Segmentation of a brain ventricular system visualized by the T1-weighted MRI scans; in the left a main
window shows the blue three-dimensional structure used in the flow simulation, and in the right three sub-windows
show the segmentation colored by blue.
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(a) (b)

Figure 2: Geometry of brain ventricles obtained by segmentation of CSF region, (a) brain ventricles and subarach-
noid space, (b) an enlarged view of meshes in the cross-section (AQ) at the aqueduct of Sylvius where the unit of
length is the millimeter (mm).

generates 192 slices with a thickness 0.9 mm in the sagittal direction. Each slice consists of 256× 256
pixels with a pixel spacing of 0.898 mm.

The computational domain is discretized by a hierarchical Cartesian octree mesh. The computational
mesh is generated by the procedure described in section 2.2. The segmentation was manipulate by the
free-and-open source software 3D Slicer26. The STL (Standard Triangle Language) format geometry is
presented in Fig. 2(a). The numerical mesh in a cross-sectional area AQ is illustrated in Fig. 2(b). At
the refinement level 11 (red meshes) the computational domain consists of 193,289,733 numerical cells.
The characteristic length of the LB method is 390.33 cell units.

4 FLOW CONFIGURATION

The MRI manipulation generates a realistic geometry of a brain ventricular system. The commonly faced
issues in studying biofluid dynamics are boundary conditions of a finite computational domain. The
variation of intracranial pressure is an essential parameter for the flow configuration. In the following
section the configuration of a ventricular system is detailed with model geometries and an oscillating
flow boundary condition.

4.1 Flow oscillation and non-dimensional frequency

The Monro-Kellie doctrine implies that a brain disease due to abnormal components makes reciprocal
changes in the volumes of brain, blood, and cerebrospinal fluids to preserve the intracranial pressure.
The flow simulation is configured by the pressure variation as an only factor that impacts on the CSF
dynamics. The pressure values at the inflow and the outflow boundaries are determined by the steady
flow condition with the constant flow properties. Since the flow motion in brain ventricles is oscillating
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Figure 3: Profiles of an axisymmetric and an eccentric pipe near the stenosis at the x-coordinate x = 0, the profiles
are scaled by a radius R (= D/2).

with respect to the cardiac cycles. The oscillation frequency is defined by Womersley number Wo

Wo = L
√

ωρ

µ
, (11)

where ω = 2π f is angular frequency, µ is the dynamic viscosity, and ρ is the density of fluid. In the
present study the pipe diameter D is chosen as a reference length L. Concerning a reference velocity U a
non-dimensional frequency St can be calculated using Eq. (11) as following

St =
f D
U

=
Wo2

2π ReD
, (12)

where ReD = ρUD/µ is the Reynolds number based on on a diameter D.

4.2 Generic model and ventricular system

The Steady and oscillating flows through both axis-symmetric and eccentric stenotic flow models were
analyzed with both stenosis geometries corresponding to 25% area at the location of the restriction com-
pared to the inflow area. The baseline stenosis geometry is similar to that used in the stenotic flow
experiments27. The profiles of the axis-symmetric and eccentric stenosis models are defined by follow-
ing equations. A cosine function dependent on the axial coordinate x is used to generate the geometry.
The cross-section coordinates y and z are determined by using S(s) specifying the shape of the stenosis
by

S(x) = R
[
1− s0

(
1+ cos(2πx/L)

)]
, E(x) = 0.1s0

[
1+ cos(2πx/L)

]
, (13)

where R is the radius of the non-stenotic pipe, s0 = 0.25 realizes the 75% area reduction, and L = 4R is
the length of the stenosis. By introducing the eccentricity E(x), the y and z coordinates are defined by

y = S(x)cosθ+E(x), z = S(x)sinθ, (14)

at the azimuthal angle θ on the yz-plane. The axis-symmetric and the eccentric pipe are defined by
Eqs. (13) & (14) with a 5% eccentricity at x/R = 0. In Fig. 3 the cross-section profiles of a axisymmetric
and a eccentric pipe is illustrated near the stenotic region at x = 0.
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For the ventricular system the CSF oscillation in brain ventricles possesses pressure variation in a cardiac
cycle. The temporal variation of pressure is defined at the lateral ventricles. The Reynolds number ReD

is defined by a hydraulic diameter ca. 16.7 mm near the exit of the 4th ventricle. The peak Reynolds
number is ca. 628 at the Womersley number Wo = 1528

5 RESULTS

The numerical analysis focuses on the CSF motion which is determined by an oscillating flow boundary
condition with the geometry of brain ventricular system connected to the cranial and the spinal SAS. At
the beginning two isolated stenotic pipes are considered with the median aperture which mimics drainage
from the ventricles to the subarachnoid space.

5.1 Isolated stenotic pipe flow

The numerical analysis using a generic configuration is performed to detail the instantaneous and sta-
tistical flow features which occur downstream of a stenosis under the oscillating flow condition. The
non-dimensional parameters defined in Section 4 are chosen to provide a fundamental basis for under-
standing the flow dynamics generated by even more complex occlusions within the ventricle system and
SAS in the human CNS. The peak Reynolds number is 600 based on the pipe diameter. The flow oscilla-
tion is defined by a sinusoidal function at the Womersley number Wo = 15 scaled by the pipe diameter.
In Fig 4 the contours of density and velocity distributions are presented at the peak pressure on the right
boundary surface. The axisymmetric configuration develops a symmetric form of shear layers. The flow
mixing in Fig. 4(b) is pronounced by an asymmetric geometry at the stenosis.

Figure 5 shows the impact of the shear-layer mixing on the intensity of velocity fluctuations. In the
eccentric pipe the turbulent shear stress increases at the downstream such that the peak location is further
shifted to the wall compared to the result of axisymmetric stenotic pipe.

(a) Axisymmetric pipe

(b) Eccentric pipe

Figure 4: Contours of density and velocity component determined by an axisymmetric and an eccentric stenotic
pipe, (a) axisymmetric pipe, (b) eccentric pipe.
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(a) Axisymmetric pipe (left: u, right: u′v′)

(b) Eccentric pipe (left: u, right: u′v′)

Figure 5: Contours of time-averaged u-velocity and a component of turbulent shear stresses u′v′, (a) axisymmetric
pipe, (b) eccentric pipe.

5.2 CSF motion inside ventricles

In the CSF flow simulation the hydraulic diameter 16.7 mm is obtained at a cross-section between the 4th
ventricle and the central canal to the spinal cord. The Reynolds and the Womersley number scaled by the
diameter at the aqueduct of Sylvius is equivalent to the flow condition in the experimental studies17, 28.
The variation of intracranial pressure is correlated with the pathology of cerebrospinal fluid12. The
pressure oscillation in the lateral ventricles defines the systolic and diastolic phase in this numerical
analysis. In section 5.1 the small eccentricity increases the shear stresses in the pipe flow. That is,
the well-defined geometries of a brain ventricular system are required to predict the CSF flow field in
a healthy and a dysfunctional CNS. The simulation shows that the flow instabilities are pronounced

(a) Systole (b) Diastole

Figure 6: Streamlines in the 3rd ventricle, the color indicates a velocity magnitude normalized by the mean
velocity of the aqueduct of Sylvius, (a) systole phase, (b) diastole phase.
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(a) Systole (b) Diastole

Figure 7: Streamlines in the 4th ventricle and contours of the v-velocity component at a cross section, the color
indicates a velocity magnitude normalized by the mean velocity of the aqueduct of Sylvius, (a) systole phase, (b)
diastole phase.

by geometry effects. The flow oscillation in ventricle channels trigger the turbulence transition in the
ventricles. Figure 6 shows the streamlines inside the brain ventricles at a systolic and a diastolic phase.
The enlarged images are chosen to focus on the flow motion between the lateral and the 3rd ventricles.

Figure 7 shows the streamlines inside the 4th ventricle at a systolic and a diastolic phase. The cross-
section is located at an axial position near the aqueduct of Sylvius. The contours in this cross-section are
the v-velocity component, i.e., the positive values are in the posterior direction. In Fig. 7(a) at a systolic
phase two main circulations appear inside the 4th ventricle. The secondary flow on the cross-section is
induced by the flow passage diverging from the cerebral aqueduct. This secondary flow does not occur
in the diastolic phase in Fig. 7(b). The current flow simulation captures the circulation at the systolic and
the diastolic phase, i.e., the streamlines determined in the 3rd and the 4th ventricle (Figs. 6&7), which
was observed in the measurements using magnetic resonance (MR) velocity mapping17.

6 CONCLUSIONS

- The simulation of a flow oscillation in brain ventricles was performed by using the lattice Boltz-
mann (LB) method in the quasi-incompressible regimes for the cerebrospinal fluid motion. The LB
method is a powerful numerical solver to complex flow geometry and easily extended to massive
parallelization on HPC platforms.

- The geometry of a brain ventricular system was obtained by segmentation of the cerebrospinal
fluid which is visualized by the T1-weighted MRI scans. The surface extraction required manual
operations to detail the members of central verve system. The main issue was the resolution of the
medical images which restricted by the current hardware constraints and practical difficulties. A
new approach such as the super resolution via deep learning is necessary to define characteristics
and to preserve the contents details in future.

- An oscillating flow boundary condition is defined by the pressure variation at a Womersley number.
The CSF motion is captured at the systole and the diastole phase in a cardiac cycle such that the
streamline shows a good agreement with the observation based on an MR velocity mapping.
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[19] Eitel-Amor, G., Meinke, M., Schröder, W. A lattice-Boltzmann method with hierarchically refined
meshes. Comput. Fluids (2013) 75:127–139.
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