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Summary. A stable, time-consistent and high-resolution numerical method for unsteady gas-
liquid multiphase flow problems was presented. In this method, the artificial dissipation terms 
in the upwinding process were reconstructed using a preconditioning matrix to improve the 
stability and accuracy in complicated multiphase flow computation. A homogeneous gas-liquid 
mixture flow model, and a second-order Runge-Kutta method as well as a Roe-type flux 
splitting method coupled with a 3rd-order MUSCL TVD scheme were employed. The presented 
method is validated using unsteady gas-liquid multiphase flows in a shock tube at arbitrary void 
fractions, and a very low Mach number flow in a backward-facing step channel. The numerical 
results show a good agreement with the exact solutions and experimental data. The presented 
method predicted well the steady and unsteady flows and its effectiveness and stability are also 
confirmed.  
 
1 INTRODUCTION 

Gas-liquid multiphase flows are widely encountered in engineering problems. Accurate 
prediction and evaluation of such flows is therefore essential for the design of efficient 
hydraulic machines and devices. However, like cavitating flows, they typically have very 
complex unsteady flow characteristics, phase changes, turbulence, wide range of sound speeds 
and local Mach numbers. Since the transient unsteady flow phenomena of such flows are 
extremely complex, appropriate mathematical descriptions and numerical methods have not yet 
been established. Therefore, many researchers have devoted great efforts to developing 
numerical models and analytic methods to accurately predict the mechanism and physical 
characteristics of multiphase flows [1,2]. In developing numerical methods for solving typical 
compressible and incompressible flow problems in multiphase flows, artificial compressibility 
methods and preconditioning methods have been developed [3,4]. Lately, Shin et al. [5] 
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proposed a homogeneous gas-liquid two-phase flow model. With this model, several cavitating 
flow problems were solved to investigate and clarify the cavitation phenomena. This method 
was further developed as a preconditioned dual time-step method to accurately treat unsteady 
cavitating flows with a wide range of sound speeds and Mach numbers [6].  

The purpose of this paper is to improve the previous high-resolution method using a third-
order MUSCL TVD scheme [6] into a stable and time-consistent numerical method for solving 
unsteady gas-liquid two-phase flows. For this, the artificial dissipation terms in the upwind 
scheme are modified using a preconditioning matrix to provide a stable and accurate treatment 
of the gas-liquid interface. As numerical examples, unsteady gas-liquid two-phase shock tube 
flows with arbitrary void fractions and a backward-facing step channel flow with a very low 
Mach number are computed, and the effectiveness and stability of the proposed method for 
steady and unsteady gas-liquid multiphase problems are investigated.  

2 NUMERICAL METHODS 
In this study, the fundamental equations for two-dimensional gas-liquid two-phase flow are 

the compressible Navier-Stokes equations that express mixture mass, momentum, energy, and 
gas-phase mass conservation in a curvilinear coordinate system, written as follows: 
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where, 𝑝 , 𝑇 , 𝑌  and 𝑒  denote the pressure, temperature, quality of vapor and total energy, 
respectively. 𝑢!  and 𝑈!  present physical and contravariant velocity components. 𝜏!"  and 𝜅 are 
the stress tensor and the coefficient of thermal conductivity. 𝐻 is the enthalpy defined by total 
energy 𝑒 = 𝜌𝐻 − 𝑝. 𝐽 is the Jacobian for the transformation from Cartesian coordinates 𝑥! to 
curvilinear coordinates 𝜉!, and is defined as 𝐽 = 𝑥#𝑦$ − 𝑥$𝑦# . In this study, we solve Eq. (1) 
using the finite-difference discretization technique with a compressible flow solver.  

Gas-liquid multiphase flows contain both compressible and incompressible flow 
characteristics. To compute such flows, a unified solution method is required that can 
simultaneously solve compressible and incompressible flows. From a point of view of 
computation, it is advantageous to modify compressible flow solvers to be able to handle 
incompressible flows, such as artificial compressibility methods and preconditioning methods 
[7,8]. In general, these methods have been developed for steady flow problems. In order to 
compute unsteady flow problems, these methods must be improved into a time-accurate 
unsteady flow solver. Therefore, in this study, we present a modification of the preconditioning 
method to solve unsteady problems while maintaining time consistency. That is, the artificial 
dissipation term in the flux-difference splitting [9] is modified using the preconditioning matrix 
to increase the numerical stability, whereas the temporal term is treated without the 
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preconditioning matrix to keep the time consistency.  
To achieve this, Eq. (1) is modified to preconditioned equations using the preconditioning 

matrix 𝛤%&' rather than the transform matrix 𝛤&' [6]. In this study, 𝛤%&' is obtained by adding 
the vector 𝜃[1, 𝑢, 𝑣, 𝐻, 𝑌]( to the first column of the 𝛤&'. The value of 𝜃 is chosen by Weiss & 
Smith [10] and Edwards & Liou [11] to be able to handle both compressible and incompressible 
flows. On the other hand, when using Roe’s approximate Riemann solver to enhance the 
stability during the treatment of gas-liquid interfaces in two-phase media, the flux Jacobian 
matrix 𝑨!(= ∂𝑬!/ ∂𝑸) of artificial dissipation terms is modified using the preconditioning 
matrix as 𝛤%&'𝑨)>𝛤 . Here, 𝑨)>  is a preconditioned flux Jacobian matrix in system 𝑾  and 
composed by 𝛤%𝑨!𝛤&'. The derivative of flux vectors 𝑬 of 𝜉-momentum of 𝑬! in Eq. (1), as an 
example, is discretized as (𝜕𝑬/𝜕𝜉)* = (𝑬*+'/- − 𝑬*&'/-)/∆𝜉, and preconditioned numerical 
fluxes 𝑬*±'/- are eventually derived as seen in the following equation.  

𝑬𝑙±"/+ = (1/2)N𝑬(𝑸𝑙±"/+
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The preconditioned numerical fluxes of 𝜂-momentum of 𝑬!  can be obtained in the same 
manner. In the above equation, the 𝑸*±'/-

0,2  are transformed to 𝑾*±'/-
0,2 , and calculated by applying 

the 3rd-order MUSCL TVD scheme. For the time integration, a second-order Runge-Kutta 
method with finite-difference discretization is used. In this way, we can obtain a high-resolution 
and time-consistent preconditioning method for solving unsteady gas-liquid multiphase flow 
problems.  

3 NUMERICAL RESULTS 

3.1 Shock tube flow 
The proposed numerical method has been applied in one-dimensional gas-liquid multiphase 

shock tube problems and evaluated. The computational domain of the shock tube is set as 𝑥 = 
[-10 m, 10 m]. Initial conditions are imposed on the left (𝐿) and right (𝑅) sides separated by a 
diaphragm at 𝑥 = 0 m. In this paper, two test cases are examined as: Case 1 is a classical 
Riemann problem that was suggested by Sod [12] with pressure of 𝑝0 =100 kPa and 𝑝2 =10 
kPa, while Case 2 is a challenging problem with a large pressure ratio of 𝑝0 =100 kPa and 
𝑝2 =1 kPa. In these two cases, the temperature, velocity, and void fraction are set to 𝑇 = 300 
K, 𝑢 = 0 m/s and 𝛼 = 𝛼!, and the initial density 𝜌 of the mixture is given by the equation of 
state of the gas-liquid multiphase flows.  

A comparison of computational results with the exact solutions of Case 1 for ideal gas (𝛼! = 
100%) at 𝑡 = 0.01 s are shown in Fig.1. It can be seen that the results computed by the proposed 
method using 10,000 grid points (red line) overlap with the exact solutions (black line). The 
results using a coarse grid of 100 points (symbols) also predicted unsteady shock tube flows 
fairly well. Moreover, the applicability and stability of the proposed method were examined in 
two-phase shock tube flow problems. Figure 2 shows computational results of pressure and 
velocity distributions, and its iteration histories of |𝑝3+' − 𝑝3|456  and |𝑢3+' − 𝑢3|456  for 
Case 2 with initial void fractions of 𝛼! = 10% at time 𝑡 = 0.18 s. Because no exact solutions are 
available in this two-phase flow case, the results computed by 1st-order upwinding with a very 
fine grid of 100,000 grid points were referenced as exact solutions (black solid line). As seen in 
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Fig.2, it can be noticed that the computation result without preconditioning (red solid line) shows 
serious oscillations near discontinuities in pressure and velocity distributions, whereas the 
proposed preconditioned ones (symbols) show a significant improvement. From the residual 
histories, it can be seen that the stability and convergence rate of the computation are greatly 
improved when applying the preconditioned artificial dissipation term. However, in the problem 
with a very large pressure ratio, the proposed method still has some oscillations at discontinuities, 
leaving room for improvements such as tuning the weight parameters of preconditioning method. 

   
Figure 1: Computational results of pressure, velocity and density distributions 

for a gas phase shock tube flow with 𝛼# = 100% (Case 1) 

         
Figure 2: Computational results of pressure, velocity distributions and iteration histories 

for a gas-liquid two-phase shock tube flow with 𝛼# = 10% (Case 2) 

3.2 Backward-facing step channel flow 
The proposed method is also validated in a two-dimensional backward-facing step channel 

flow with gas phase at a low Mach number. The computational domain is a one-side sudden 
expansion channel with a backward facing step height of ℎ, an inlet width of 𝑑 = 2ℎ and an 
expended channel length of 48ℎ. A body-fitted curvilinear coordinate grid system clustered 
near the walls was generated with 90 × 21 grid points. The boundary conditions are set as a 
Poiseuille flow profile on the inlet, a Dirichlet condition of pressure on the outlet, and no-slip 
conditions on solid walls. The Reynolds number 𝑅𝑒 is defined by using the channel inlet width 
𝑑 and the inlet maximum velocity. As a numerical example, a laminar flow with the Reynolds 
number of 𝑅𝑒 =300 and inlet maximum Mach number of 𝑀𝑎 = 0.01 is examined. 

The computational results of this step channel flow are shown in Fig.3. As can be observed 
in Fig.3(a) of the streamlines, a flow recirculates behind the step, and the reattachment occurs 
on the lower wall of the expanded side. There are three cross sections marked in Fig.3(a), and 
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the velocity profiles at these sections are plotted in Fig.3(b). In each profile of this figure, the 
streamwise velocity profiles obtained by the non-dimensional time step of 4.2×10−4 with 
preconditioned artificial dissipation terms (black line), and by the time step of 4.2×10−5 without 
preconditioning (red line), as well as the experimental data (symbols) given by Kueny et al. [13] 
are plotted for a comparison. From these profiles, it can be seen that proposed preconditioned 
methods are successful in simulating a very low Mach number flow with the separation and 
recirculation, and the results agree quite well with the experimental data. However, when the 
same time step was used with and without preconditioning, the no preconditioning one diverged 
and failed to compute. Even when using a time step as small as 1/10, the results without 
preconditioning one show a large discrepancy with the experimental values as seen in Fig.3(b). 
Also, the convergence histories of 𝑝 (solid line) and 𝑢 (dotted line) show that the convergence 
rate and stability with preconditioned stability term are better than the no preconditioning one. 

 
(a) Streamline and cross sections for monitor 

  
(b) Streamwise velocity profiles and convergence histories 

Figure 3: Computational results of a backward-facing step channel gas phase flow at 𝑅𝑒 = 300 and 𝑀𝑎 = 0.01 

4 CONCLUSIONS 
A stable, time-consistent and high-resolution numerical method for unsteady gas-liquid two-

phase flow was presented and applied to one-dimensional shock tube flow and two-dimensional 
backward-facing step channel flow problems. In this method, the artificial dissipation term in 
flux difference splitting of upwind scheme was derived using a preconditioning matrix, and 
finite-difference with a second-order Runge-Kutta method and the 3rd-order MUSCL TVD 
scheme were used. The computational results obtained by the presented method with 
preconditioned artificial dissipation terms showed a good simulation for unsteady shock tube 
flow with a very large pressure ratio, and agreed very well with the exact solutions. In the case 
of two-dimensional laminar flow computation, the presented preconditioning method 
successfully calculated a very low Mach number flow with 𝑀𝑎 = 0.01, and the predicted 
results agree well with the experimental data. It was also confirmed that the preconditioned 
stability term can significantly improve the convergence rate and numerical stability for steady 
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and unsteady flow computations compared to those without preconditioning. The applicability 
and effectiveness of the present method to unsteady two-phase flows with arbitrary void 
fraction and Mach number were confirmed. 
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