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ABSTRACT  

One of the ways to enhance the efficiency of the cone penetration testing process is to mount modules behind the cone.  

In this way the test will not only generate the standard Cone Penetration Testing (CPT) data (i.e., cone tip resistance, 

sleeve friction, and dynamic pore water pressure), but also the data obtained by the module pushed into the soil together 

with the cone. While for certain modules it is common practice to analyze the acquired data extensively (e.g., the seismic 

module) for other modules this is not necessarily the case. A good example of the latter is the video module, which has 

been available for several decades.  When this module is deployed with visible light, the analysis is typically limited to 

viewing the recording and adding observation notes. During the recent TRIM4 research project the video module was 

deployed and subsequently attempts were made to identify the soil type through an automatic analysis of the video images 

and to characterize and to determine the grain size distribution using the video images. This approach is highly correlated 

with the soil behavior type index, commonly used in the analysis of CPT data, and at the same time mitigates the effect 

of the CPT data reflecting changes in soil strength behavior before a layer is actually penetrated by the cone. In this paper 

the authors will describe the use of the video cone in very general terms, but focus on this analysis methodology in detail. 
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1. Introduction 

Cone Penetration Testing (CPT) is a widely accepted 

soil investigation method and the data generated during 

the testing (the cone tip resistance, the sleeve friction and 

the dynamic pore pressure) are used as input in numerous 

geotechnical and geohydrological engineering processes 

(e.g., the design of deep foundations and the hydraulic 

conductivity of the soil).  To supplement the data 

acquisition one or more modules can be installed behind 

the cone and depending on the type of sensor(s) mounted 

in the module information can be obtained e.g., on 

seismic wave speed through the soil (when using a 

seismic module) or on the electric conductivity of the soil 

(when using a dieelectric module). 

A module type that is not frequently used is the video 

module, which contains a camera that records data as the 

cone is pushed into the ground. This module is often used 

in combination with UV light sources to record the 

visible light emitted by certain contaminants as they 

absorb the UV light.  Analysis of that visible light 

(intensity and frequency) can provide useful information 

on the type and extent of the contamination, which is very 

very useful in geoenvironmental investigations. 

However, the video module can also be used in 

combination with visible light to simply record imagery 

of the soil passing by the lens as the cone penetrates the 

soil. The analysis of that data is typically limited to 

viewing the recording and adding observation notes, but 

during the recent TRIM4 research project the video 

module was deployed and initial attempts were made to 

identify the soil type and to determine the grain size 

distribution using the video images. 

2. Video module 

The video module used for the TRIM4 research 

project consists of a SD camera and 8 visible light LEDs 

housed inside a dedicated module and protected by a 

double layered sapphire window with a 10 mm x 10 mm 

view (see Fig.1). The module recorded images that 

showed the soil texture, color, and grain size as the soil 

passed the camera. 

 

 
Figure 1. Video module. 

 

The initial intention was to try to derive a particle 

distribution from the recorded images by applying an 

automatic RBG interpretation to outline the particle in a 

particular image.as shown in Fig. 2.  During the project it 

became obvious that the resolution of the video images 

was not  high  enough  to  generate reliable results and it 



 

 

 
Figure 2. RGB interpretation of the video image shown at the 

top to delineate the soil particles (shown at the bottom) to 

derive a particle size distribution. 

 

 

 

 
Figure 3. Soil type transition based on video images at 13.75 

m, 13.99 m and 14.01 m depth. 

 

 

also raised the question whether fine particles were 

pushed into the soil away from the cone, which would 

distort any particle distribution based on the soil 

immediately in front of the window.  Based on this it was 

concluded that the test would have to be repeated with a 

high definition camera. 

3. Soil type transition identification based 
on video images 

While the efforts to derive a particle distribution did 

not generate the desired results, the images did 

demonstrate that they can clearly identify transitions in 

the soil profile.  To illustrate this, Fig. 3 shows the image 

at 13.75 m, 13.99 m and 14.01 m, which clearly shows 

such a transition from granular to cohesive soils.  And 

since they show the situation at a very specific depth, the 

images can define the transitions much better than the 

CPT data as both the tip resistance and the sleeve 

resistance are an average value for a certain (and 

different) depth interval. 

The images were then analyzed as described in detail 

by Oksana et al. (2024). In summary the analysis 

involved a so-called Grey level co-occurrence matrix 

(GLCM), a statistical method to derive texture features 

considering the relationship between groups of two 

pixels in the image at certain distance and at certain 

angle.  The distance parameter can range from 1 pixel to 

the entire image size, while for the angles 4 directions are 

used: horizontal (0°), diagonally upwards (45°), vertical 

(90°) and diagonally downwards (135°). 

To describe the outcome there are two parameters: 

• The GLCM Correlation, a measure of grey 

levels linear dependencies of neighboring pixels 

on an image. 
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2 its variance. This correlation between 

neighboring pixels indicates their predictable 

and linear relationship and ranges -1 to 1. 
• The GLCM Dissimilarity, which reflects the 

contrast of texture features using weights related 

to the distance from the GLCM diagonal. 
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To assess the use of this method 8 images were 

initially selected: 4 of soil that was cohesive and 4 others 

that depicted granular soil (see Fig. 4). Each of these 

images was then analyzed in 3 directions: horizontally, 

diagonally and vertically and the results are shown in Fig. 

5.  



 

 
 
Figure 4. Video images to characterize soil type. 

 

 

 
Figure 5. Soil type characteristics based on interpretation of 

video images (horizontally, diagonally and vertically from top 

to bottom). 

The results showed clearly different values for both 

the correlation and dissimilarity for clay and sand, and 

very similar results for the 3 analysis directions. Given 

that outcome 13 minutes of video data was analyzed, 

again in 3 directions, with several distinct transitions 

between granular and cohesive soil.  This time period 

covered the recordings of the depth interval between 

11.52 m and 14.58 m related to the camera position 

(which equates to 11.95 m and 15.01 m based on the cone 

tip position).  Once again for both parameters the results 

for the three different analysis directions (horizontal, 

diagonal and vertical) were very similar as is seen in Figs. 

6 and 7. 

 

 
horizontal analysis results 

 
diagonal analysis results 

 
vertical analysis results 

Figure 6. Correlation values for 13 minutes of video images. 

 

 

horizontal analysis results 

 
diagonal analysis results 

 
vertical analysis results 

Figure 7. Dissimilarity values for 13 minutes of video images. 

As the range of the dissimilarity values is larger (5 – 

16 vs. 0.55 – 0.87 for dissimilarity and correlation values 

respectively), the dissimilarity results were then 

compared to the Soil Behavior Type (SBT) generated by 

the CPT data to try to correlate the results. It should be 

noted that these soil behavior types were confirmed as the 

actual soil types by soil borings that were performed in 

the direct vicinity of the CPT soundings. The outcome of 

the comparison of the SBTs and the dissimilarity values 

is shown in Figure 9, whereby in the graph for the 

dissimilarity results an initial attempt was made to 

classify the soils using the colors shown in Fig. 8. 

  



 

Soil type SBT color Video analysis 

color 

Clay  
Clay & silty clay 

Silty sand & sandy silt 

 

Figure 8. Color coding dissimilarity results. 

 

Figure 9. Dissimilarity values correlated with Soil Behavior 

Type with the graph in the center showing the Soil Behavior 

Types in the depth interval for which the comparison was 

made, and the graph on the right the dissimilarity results and 

interpretation for that same interval. 

 

Since these seemed to be a good correlation the 

dissimilarity values for the same depth interval were also 

correlated with the actual SBT index values as shown in 

Figure 10. It should be noted that the sections in the graph 

where the cone was note moving (to add a CPT rod at the 

surface) are designated by the comment “camera/drill 

stop”.  Therefore the camera depth values are listed with 

the associated cone tip depth.  This cone tip depth values 

are then shown on the horizontal axis of the bottom graph 

that displays the SBT index values (Ic values). It is 

interesting to note that both characterizations show a 

distinct change from clay to more granular soils, but the 

Ic values (i.e., the  CPT data) show this much sooner than 

the video data, reflecting once again the impact that the 

soil below the cone tip has on the readings. 

4. Conclusion 

The video images obtained with visible light during a 

standard CPT seem to show great potential for in-depth 

analysis instead of a perfunctory visible review of the 

recorded images. By focusing on the dissimilarity in the 

individual video images it appears that the outcome 

obtained with this analysis correlates very well with the 

SBT index, commonly used in the analysis of CPT data.  

But while the SBT index is affected by the soil ahead of 

the cone tip, the analysis method of the video images is 

not and therefore provide a more accurate 

characterization for the depth where the image is 

obtained.  The authors realize that further testing is 

required before this analysis method can become a 

standard practice to assess video images.  The authors 

will continue to explore this analysis method in two 

ways: 

• Using a High-Definition camera to obtain 

images that will provide more suitably imagery 

to delineate soil particles; 

• Additional analysis of video data to determine 

the dissimilarity values and comparison with the 

Ic values to confirm the correlation. 

The outcome will be presented in future conferences, 

incl. the ISC’8 conference in 2028. 

 

 
Figure 10. Dissimilarity values correlated with soil behavior 

classification index. 
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