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Summary. Direct numerical simulations of the incompressible Navier-Stokes equations at
higher Reynolds numbers are not yet feasible, so dynamically less complex mathematical formu-
lations such as Large Eddy Simulation (LES) have been developed. Over the years, there has
been a cumulative improvement in the proposal and design of the models. New ones (namely
S3PQR) have been prescribed using the first three principal invariants of the symmetric tensor
GGT , where G ≡ ∇u is the gradient of the resolved velocity, with excellent results in the channel
flow and homogeneous isotropic turbulence cases.

Recently, these and other LES models have also been applied and compared on the free
boundary layer and on a fully developed boundary layer wind farm, using a simplified model of
a wind turbine. The S3PQR models have shown outstanding performance.

To ensure complete validation of the S3PQR models, in this work, we run several tests
changing the parameters of the algorithm, from coarser to finer resolution. Then, we compare
the results with those from a direct numerical simulation. To give a broad view, we test the
boundary layer case and a fully developed wind farm.

1 INTRODUCTION

The incompressible Navier-Stokes equations are the mathematical framework when dealing
with turbulent flows. However, at large Reynolds numbers where multiple relevant flow scales
exist, direct numerical simulation (DNS) becomes unfeasible due to its high resource demands.
The Large Eddy Simulation (LES) equations stem from applying a spatial filter to the incom-
pressible Navier-Stokes equations:

∂tu+ C(u,u) = D(u)−∇p−∇ · τ(u); (1)

∇ · u = 0

where u is the filtered velocity, C(u,u) and D(u) stand for the convective and diffusive terms
respectively, p is the pressure, and τ(u) is the subgrid stress (SGS) tensor that approximates
the effect of the unresolved scales.

This equation needs a closure model to be numerically solved. The LES closure for the
eddy-viscosity models is of the type τ(u) ≈ −2νeS(u) where S(u) = 1/2(∇u + ∇uT ) is the
rate-of-strain tensor. We must define an eddy viscosity: νe = (Cm∆)2Dm(u) where Cm is the
model constant, ∆ is the subgrid characteristic length [1], and Dm(u) is the differential operator
with units of frequency associated with the model [2].
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2 SHORT REVIEW OF S3PQR THEORY

S3PQR are a type of LES models. For a complete description of these models see [3]. To
summarize some ideas: besides the trace (PG = Tr(G) = ∇·u = 0), five mathematical invariants
can be calculated from the gradient tensor G ≡ ∇u, namely:

{QG, RG, QS, RS, V
2
G}

For this second-order tensor G, they are defined as [3]

QG = (1/2)(tr2(G)− tr(G2)) (2)

RG = det(G)

QS = (1/2)(tr2(S)− tr(S2))

RS = det(S)

V 2
G = 4(tr(S2Ω2)− 2QSQΩ)

where S = 1/2(G+ GT ) and Ω = 1/2(G− GT ) are the symmetric and the skew-symmetric parts
of the gradient tensor, respectively. For any incompressible flow, any invariant can be written
as a function of them.

The S3PQR models [3] involve the three principal invariants of the symmetric tensor GGT ,
which is the leading term in the Taylor-series expansion of the SGS tensor [4],

τ(u) =
∆2

12
GGT +O(∆4) (3)

These invariants are directly related to the previous ones

PGGT = tr(GGT ) = 2(QΩ −QS) (4)

QGGT = 2(QΩ −QS)
2 −Q2

G + 4tr(S2Ω2)

RGGT = det(GGT ) = det(G)det(GT ) = R2
G

So now one can construct new models [3]:

νe = (Cs3pqr∆)2P p
GGTQ

q
GGTR

r
GGT (5)

If we restrict them to solutions involving only two invariants, then we have for example:

νS3PR
e = (Cs3pr∆)2P−1

GGTR
1/2

GGT (6)

for the S3PR model.
Finally, there are two ways to determine the model constant for the S3PQR models:
1. Imposing numerical stability and less or equal dissipation than Vreman’s model [5]. Then

Cs3pq = Cs3pr = Cs3qr =
√
3CV r ≈ 0.458

2. Granting that the averaged dissipation of the models is equal to that of the Smagorinsky
model. Then

Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762
Further characteristics of these LES S3PQR models are positiveness, locality, Galilean in-

variance, and proper near-wall behaviour [6] (O(y3) dependence on normal direction).
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Throughout this work, the computations have been done with the S3PR type 2 constant.
There are previous computations and comparisons between models like those of Smagorinsky,
Verstappen [7], WALE [8], Vreman [5], and all the S3PQR, in [9]. All of them shared algorithm
characteristics such as: Reδ∗ = 1000, where δ∗ is the displacement thickness; growing terms
(equivalent as a forcing term) GT (u, U), from [10]; and zero mean pressure gradient case. The
mesh size for all was Nx×Ny×Nz = 32×64×32 for streamwise, normal, and spanwise directions,
enough to yield good results in the S3PQR cases. In this previous work, S3PR stood as slightly
the best of all of them.

3 SEMI-IMPLICIT PROCEDURE

Spectral methods have demonstrated a remarkable ability to accurately calculate derivatives,
making them a valuable tool in scenarios where periodic conditions are applicable[11]. Never-
theless, these methods necessitate strict periodicity, which is not characteristic of a developing
boundary layer, posing a significant challenge in their application to such computations. Then it
is necessary to take a different approach to justify these periodic conditions, such as the method
proposed by [10, 12], which includes normal coordinate similarity transformations, growing terms
GT (u, U), and several other assumptions.

We use a pseudo-spectral method [13], with a Fourier expansion in the streamwise and span-
wise directions, and Chebyshev expansion for the normal one. It applies the 3/2 rule de-aliasing
technique. The computation code is based on MPI parallelization.

Although Chebyshev polynomials are useful when dealing with Dirichlet and Newman bound-
ary conditions, they suffer from a main drawback: the CFL condition leads to time-step of order
O(1/N2) for the convective term and O(1/N4) for the diffusive term [14]. Then, fine mesh
computations are not feasible using fully explicit methods. It is necessary to resort to implicit
schemes. The solution adopted here is to compute explicitly the convective term and implicitly
the diffusive term.

The S3PQR LES methods yield non-uniform (and non-constant) eddy viscosity. For the
implicit diffusive term, at each step, we should compute a triple convolution sum that goes as
this eddy viscosity νe multiplied by the scaling factor of the semi-infinite domain multiplied by
the Chebyshev derivative coefficients. It is again unfeasible at every step. A general class of
two-step methods are usually described by a parameter θ such as for the diffusive term [14]:

D(u) = ∇ · [(ν + νe)(θ(∇un+1 + (∇un+1)T ) + (1− θ)(∇un + (∇un)T ))] (7)

where ν is the physical viscosity of the fluid.
We can then make a slight modification:

D(u) = (0.5ν)∇2un+1 +∇ · ((0.5ν + νe)(∇un + (∇un)T )) (8)

With this rearrangement:
1. We calculate the matrix operator only once at the beginning with ν uniform and constant.
2. We loose time-step requirements: from O(1/N4) to O(1/N2), approximately.

4 NUMERICAL TEST

For the assesment of the models, we will test the NO-MODEL vs S3PR LES model. The mesh
sizes Nx×Ny×Nz used in these computations are 32×64×32 → 64×64×64 → 96×96×96 →
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128 × 128 × 128, where x, y, and z, are the streamwise, wall-normal and spanwise directions.
The Reynolds number is again fixed along the simulation to Reδ∗ = 1000, to compare with the
previous results [9].

For the case 1283, ∆x+ ≈ 20, ∆z+ ≈ 6.7 in wall units, and for the wall-normal, there are
11 points within 9 wall units of the wall. These are similar values to those of the Spalart et al.
DNS simulation [12].

4.1 Boundary layer

First, we deal with the free boundary layer (BL) cases. As we have said before, the structure
of the algorithm for a BL is based on the method proposed by [10]. To evaluate the performance
of the methods, we focus on the evolution of friction velocity. As you can see in Table 1, we can

Mesh size NO-MODEL S3PR

32× 64× 32 0.056 0.049
643 0.051 0.048
963 0.049 0.048
1283 0.049 0.048

Sp-Le DNS 0.049

Table 1: Friction velocity values. Reference: Sp-Le DNS, with 264× 60× 170 [10] or 256× 64×
192 [12]

appreciate two slightly different behaviors. For the NO-MODEL algorithm, using a coarse mesh,
we obtain a result way off the DNS value. As we refine the mesh, we approach the reference
value, as expected. On the other hand, for the S3PR model, we directly obtain the desired
value, right from the coarse mesh, with a consistent evolution.
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Figure 1: BL average streamwise velocity profile. Mesh size Nx ×Ny ×Nz. Left: NO-MODEL.
Right: S3PR model. Reference: Spalart 87 [10], with 264× 60× 170

In Figures 1 and 2, we plot the average streamwise velocity profiles. The same general
behavior is present. The NO-MODEL starts far from the reference profile, in the case of the
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Figure 2: BL average streamwise velocity profile. Mesh size Nx×Ny×Nz. Comparison between
NO-MODEL and S3PR model. Reference: Spalart 87 [10], with 264× 60× 170

very coarse mesh, and then approaches the expected profile for the finer meshes. For the S3PR
method, we already observe rather good results, even for the coarse mesh. Actually, it is exactly
the desired aim of the LES models like this S3PR model.

4.2 Wind farm

For the wind farm simulations, we will follow the same layout and assumptions as the BL
plus a disk actuator for every wind turbine. The specifications of these disk actuators follow
from [15], and they can be straightforwardly applied to our algorithm, see Figure 3.

As with the BL, we plot the streamwise velocity profile. Unfortunately, we have no reference
to compare to, so we must rely on the general trend of the calculations to see whether they
converge to the same final values. In Figures 4 and 5 we show the results.

As expected, the general trend is the same as that of the BL with slight differences. Both
the NO-MODEL and the S3PR approach an asymptotic profile that is roughly the same. For
the coarsest mesh, the NO-MODEL is clearly worse than the S3PR. Regarding the LES model,
the convergence to the final values is faster than the NO-MODEL. It seems that with a finer
resolution mesh, like 2563 or higher, the small divergences seen at a 1283 mesh should vanish.

As shown in [15], we can expect two well-defined log laws along the vertical velocity profile,
represented as two minima when plotting the streamwise velocity derivative, y+du+/dy+ vs.
y+. See Figures 6 and 7.

Although they are noisy and sensitive graphs, the previously observed general trend can be
seen in Figures 6 and 7. It should be noted that there is not this expected second minima for
the NO-MODEL with coarse meshes, whereas for the S3PR it appears right from the beginning.
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Figure 3: Wind farm. S3PR model. Normalized instantaneous streamwise velocity u+ at a
sample time. Disk actuators depicted as black solid lines. δ stands as the BL thickness. Mesh
size: 64× 64× 64.
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Figure 4: Wind farm average streamwise velocity profile. Left: NO-MODEL. Right: S3PR
model. Mesh size Nx ×Ny ×Nz

5 CONCLUSIONS

We have evaluated the performance of the S3PR LES model through different resolution
meshes and compared it with the NO-MODEL behavior.

The NO-MODEL simulation consistently approaches an asymptotic profile with a finer reso-
lution. On the other hand, the S3PR method gives the same asymptotic profile, even for coarse
resolution. In the case of the BL, it is seen for both methods, whereas for the wind farm a
slightly higher resolution mesh seems to be needed.

The observed asymptotic profile matches that of the reference, in the case of the BL. The
performance of the two models is then what was expected, and about the S3PR model, desired.
Moreover, the specifically designed semi-implicit algorithm allows for these higher-resolution
computations.

Once the validity and adaptability of these S3PQR models have been shown, they could
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Figure 5: Wind farm average streamwise velocity profile. Mesh size Nx×Ny ×Nz. Comparison
between NO-MODEL and S3PR model
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Figure 6: Wind farm average streamwise velocity derivative. Left: NO-MODEL. Right: S3PR
model. Mesh size Nx ×Ny ×Nz

be applied to real-life scenarios, including different engineering boundary layers, wind farms,
dispersion of pollutants, etc. Despite the power of the spectral methods, finally their CFL
time-step constrain would be prohibitive, so we should resort to non-spectral methods.
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Figure 7: Wind farm. Average streamwise velocity derivative. Mesh size Nx ×Ny ×Nz. Com-
parison between NO-MODEL and S3PR model
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