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Abstract. Dealing with semi-infinite solids, interfacial friction is usually neglected, as 
normal and tangential displacements fields are independent on each other (unless material 
dissimilarity occurs). However, contacts involving a sufficiently thin layer, do not stick to such 
a simplified assumption, as thickness related normal/tangential coupling occurs, and surface 
frictional shear stresses do matter. It is the case, for instance, of classical rotary seals in 
boundary lubrication regimes, where rough frictional contacts between thin polymeric sealing 
lips and rotating shafts occur. Also, functional coatings to control the interface (adhesive, 
frictional, chemical, etc.) behavior, may be very thin and compliant, and usually experience 
frictional sliding during operation. All the same, these examples indicates that conditions exists 
where elastic coupling between in plane and out of plane displacements cannot be neglected 
and must be considered, instead. Here, we present our results on the rough contact mechanics 
of elastic and viscoelastic thin layers. We assume sliding conditions and friction at the interface, 
and we investigate the contact problem in the framework of linear (visco)elasticity, by relying 
on the Green’s functions approach. We show that, due to the friction and coupling, the presence 
of interfacial friction may lead to a significant increase of the contact area (up to 10%), 
compared to the frictionless case, which may affect specific functional response of the interface, 
such as electrical and thermal conductivity. Since the normal gap distribution is also affected 
by coupling and friction, the leak rate at the interface turns out significantly altered too. 
Coupling and friction also affect the contact pressure, which presents a certain degree of 
asymmetry leading (even for purely elastic materials) to an additional interlocking contribution 
to the tangential force opposing the relative motion at the interface. Therefore, the overall 
macroscale friction cannot be predicted by summing-up the local friction contributions 
occurring at microscale as commonly expected; it should instead include an additional 
coupled-induced term. The surface stress tensor is also affected, as due to friction and coupling 
very high tensile stresses are localized at the contact trailing edge, which are likely to induce 
material failure. In conclusion, we show that the common practice to neglect in-plane 
interactions in contact mechanics may lead to misleading tribological predictions. 
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1 INTRODUCTION 

Currently, many systems across various application fields involve thin solid films. One 
common example is soft coatings: a thin layer of compliant material with specific 
characteristics is applied to a significantly stiffer substrate (considered rigid) to tailor the overall 
system behavior. These behaviors include chemical resistance to corrosion, changes in stiffness, 
damping, and frictional properties. Applications may require either low-friction coatings to 
reduce energy dissipation [1], or high-friction coatings to increase the grip [2]. 

Interest in the tribological behavior of thin solid films, often studied as compliant layers 
bonded to rigid bodies and indented by other rigid or deformable rough surfaces, has grown 
significantly in recent decades. In addition to theoretical [3-8], numerical [9-15], and 
experimental [16-19] studies on contact problems of semi-infinite bodies, detailed 
investigations have also been conducted on contacts involving thin bodies [20-24]. It is well-
known that for half-space contacts, material dissimilarity induces coupling between normal and 
tangential displacement fields, governed by Dundurs’ second constant, β, which equals 1
2𝜈 /2 1 𝜈  if one body is rigid, where 𝜈 is the Poisson’s ratio. This effect has been explored 
in various studies, mainly focusing on stick-slip fretting problems associated with 
homogeneous [25,26], layered [27], and graded [28] elastic materials, reporting significant 
compressibility (i.e., dissimilarity) induced in-plane and out-of-plane coupling effects on the 
contact stiffness. 

However, studies on thin deformable layers [29-32] have shown that thickness related 
coupling also exists, which is not affected by the value of Dundurs’ second constant β and 
vanishes for very thick systems (i.e., half-space). These studies, focusing on smooth single 
asperity contacts, have shown that interfacial friction can be a game changer in coupled 
conditions, eventually leading to contact pressure asymmetry. In-plane stresses and friction 
have also be shown to alter the adhesive peeling response of thin tapes [33,34]. Recent studies 
have examined rough line [35,36] and areal [37] contacts of thin layers with interfacial friction, 
showing that thickness dependent coupling between in-plane and out-of-plane elastic fields 
significantly increases the effective contact area, impacting phenomena like interfacial 
hydraulic impedance, electrical conductivity [38], and wear process evolution [39], as well as 
the overall frictional performance of the interface due to contact pressure distribution 
asymmetry. 

In this study, we report our results [35-37] for a thin coating, sufficiently softer than the 
underlying rigid substrate, in frictional sliding contact (line and areal case) with a rigid profile 
with self-affine roughness. Our approach can be exploited both for elastic and viscoelastic 
coating materials, analyzing the impact of thickness related in-plane and out-of-plane coupling 
on overall contact behavior. 

2 FORMULATION 

The contact problem is illustrated in Fig. 1: it features a rigid rough profile with a 
fundamental wavelength λ in sliding contact with a thin elastic layer of thickness h, which is 
backed by a rigid substrate. Since we are interested in the long-term steady-state response of 
the contact, rather than dynamic or transient behaviors, we assume that the sliding speed V of 
the rigid indenter is much lower than the speed of sound in the elastic medium.  
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Figure 1: a rigid rough profile, of fundamental wavelength λ, in sliding at velocity V against a thin 

deformable layer, of thickness h, deposed onto a rigid substrate. Coulomb friction occurs at the interface, so that 
in-plane tractions are non-null.  

Focusing on the coupled normal-tangential elastic fields in thin layers, frictional interactions 
at the interface are taken into account. Specifically, we use an Amonton/Coulomb friction law, 
allowing the calculation of the local frictional shear stress based on the local contact pressure 
𝑝 𝑥  as 

𝜏 𝑥 𝜇 𝑝 𝑥  (1)

where 𝜇  is the Coulomb friction coefficient, which in our formulation is assumed as 
independent of the sliding speed. 

Focusing firstly on the line contact case, given the Green’s tensor 

𝑮
𝐺 𝐺
𝐺 𝐺  (2)

the contact problem can be formulated as a mixed value problem and solved by means of the 
procedure described in [35,36]. We have: 

𝒗 𝑥
1
𝐸

𝑑𝑠𝑮 𝑥 𝑠 𝝈 𝑠 ;      𝑥 ∈ 𝛺, 
(3)

where 𝒗 𝑣 , 𝑣  is the surface displacement vector, and 𝝈 𝜏, 𝑝  is the vector field of 
surface stress distributed over the contact domain Ω, and E is the elastic modulus (i.e., the 
Young’s modulus). 

The Green’s tensor 𝑮, as described in Eq. (2), is the key component of the present formalism. 
Indeed, it takes into account for the finite thickness and material compressibility of the thin 
deformable layer. More in details, the cross-coupled terms 𝐺 𝐺  are responsible of the 
coupling between in-plane and out-of-plane elastic fields (i.e., stresses and displacements). 

In the case of line contacts, the Green’s tensor terms are given as follows 
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𝐺 𝑥
2 1 𝜈

𝜋
𝑙𝑜𝑔 2 𝑠𝑖𝑛

𝑞 𝑥
2

𝐵 𝑚𝑞 ℎ
𝑐𝑜𝑠 𝑚𝑞 𝑥

𝑚
 

(4)

𝐺 𝑥
1 𝜈

𝜋
1 2𝜈

2
sgn 𝑥 𝜋 𝑞 𝑥 𝐶 𝑚𝑞 ℎ

𝑠𝑖𝑛 𝑚𝑞 𝑥
𝑚

 
(5)

𝐺 𝑥
2 1 𝜈

𝜋
𝑙𝑜𝑔 2 𝑠𝑖𝑛

𝑞 𝑥
2

𝐴 𝑚𝑞 ℎ
𝑐𝑜𝑠 𝑚𝑞 𝑥

𝑚
 

(6)

where E is the elastic modulus (i.e., the Young’s modulus), h the layer thickness, and 𝑞
2𝜋/𝜆. Moreover, following [21,35,36], the thickness dependent series coefficients 𝐴, 𝐵, 𝐶 in 
Eqs. (4-6) are given by 

𝐴 𝑚𝑞 ℎ 1
2𝑚𝑞 ℎ 3 4𝜈 𝑠𝑖𝑛ℎ 2𝑚𝑞 ℎ

5 2 𝑚𝑞 ℎ 4𝜈 3 2𝜈 3 4𝜈 𝑐𝑜𝑠ℎ 2𝑚𝑞 ℎ
 

(7)

𝐵 𝑚𝑞 ℎ 1
2𝑚𝑞 ℎ 3 4𝜈 𝑠𝑖𝑛ℎ 2𝑚𝑞 ℎ

5 2 𝑚𝑞 ℎ 4𝜈 3 2𝜈 3 4𝜈 𝑐𝑜𝑠ℎ 2𝑚𝑞 ℎ
 

(8)

𝐶 𝑚𝑞 ℎ
4 1 𝜈 2 𝑚𝑞 ℎ 6𝜈 4𝜈

5 2 𝑚𝑞 ℎ 4𝜈 3 2𝜈 3 4𝜈 𝑐𝑜𝑠ℎ 2𝑚𝑞 ℎ
 

(9)

The contact problem can be tackled numerically solving Eq. (3) for the unknown vector field 
of surface stress 𝝈 distributed over the contact domain Ω. This can be done enforcing the 
geometric condition that, due to material impenetrability, the elastic half-plane normal 
displacement 𝑣  must be related to the indenter shape 𝑟 within the contact domain Ω, i.e. 

𝑣 𝑥 𝛬 𝑟 𝑥 𝛥;      𝑥 ∈ 𝛺, (10)

where 𝛬 is the maximum roughness height, and 𝛥 is the contact penetration, as shown in Fig.1. 
Finally, the closing condition to determine the exact contact domain Ω follows by the 

adhesiveless behavior of the system, which entails that the normal pressure distribution at the 
contact edges (i.e., the boundary 𝜕Ω of the contact domain Ω); therefore, 𝑝 𝑥 0 for 𝑥 ∈ 𝜕Ω. 

Due to the coupling between in-plane and out-of-plane elastic fields caused by the finite 
thickness of the deformable layer, a certain degree of asymmetry arises in the contact pressure 
distribution, even for purely elastic materials. This results in an additional tangential force that 
opposes the relative motion between the sliding rough indenter and the deformable layer, and 
the additional friction coefficient for this interaction can be calculated as usual for viscoelastic 
asymmetric contacts [13,14,22,23,36]: 

Δ𝜇
𝑑𝑥 𝑝 𝑥 𝑣 ′ 𝑥

𝜆𝑝
 

(11)

Notably, the same formulation can be extended to the case of a layer of viscoelastic material. 
Indeed, following [13,14,22,23,36], provided that the indenter sliding velocity V is constant, 
the contact problem can be rewritten similarly to the elastic case [i.e, Eq. (3)] as 

𝒗 𝑥 𝑑𝑠𝚪 𝑥 𝑠 𝝈 𝑠 ;      𝑥 ∈ 𝛺, (12)
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where the new viscoelastic Green’s tensor is given by 

𝚪
Γ Γ
Γ Γ  (13)

with  

Γ 𝑥 𝐽 0 G 𝑥 G 𝑥 𝑉𝑡 𝐽 𝑡 𝑑𝑡 
(14)

where G  (with 𝑖, 𝑗 ∈ 𝑥, 𝑧 ) are given by Eqs. (4-6). Notably, in Eq. (14),  

𝐽 𝑡 𝐻 𝑡
1

𝐸
1

𝐸
1

𝐸∝
𝑒 /  

(15)

is the material viscoelastic creep function for a single relaxation time 𝜏, with 𝐸  and 𝐸∝ being 
the very low-frequency (soft) and very high-frequency (glassy) elastic moduli, respectively. 

3 RESULTS 

3.1 Line contacts 

In this section, we present our main findings on the frictional behavior of thin elastic layers 
in sliding contact with rough rigid profiles. Assuming Coulomb friction at the indenter-layer 
interface, the in-plane shear stress field is non-zero. Under these conditions, half-plane contacts 
would behave as in frictionless conditions (i.e, 𝐺 0); however, the finite thickness of the 
layer introduces a coupling between the normal and tangential elastic fields, altering both 
displacement fields due to interfacial friction. Specifically, in order to highlight the pure effect 
of the layer thickness, we set the Poisson’s ratio to 0.5, therefore leading to vanishing 
compressibility related effects. 

One significant effect of normal-tangential coupling is on the size of the real contact area 
between the rigid indenter and the elastic layer. In contact mechanics, it is well-known that due 
to surface roughness, the real contact area can be much smaller than the nominal contact area, 
with the ratio potentially as low as 10% for soft contact, and even below for metal contacts [11]. 
From early multi-asperity theories to more recent multi-scale fractal contact theories [3,4], it 
has been shown that the relationship between stress distribution and displacement distribution 
of the deformable solid is crucial in determining the real contact area's size. To this regard, 
normal-tangential coupling can be a game changer, as it strongly affects the mechanical 
behavior of thin layers interfaces compared to half-space ones. 

This is clearly demonstrated in Fig. 2(a), which shows the deformed interfaces of thin elastic 
layers in contact with a self-affine rough profile under the same normal pressure, for both 
frictional (i.e., 𝜇 0) and frictionless (i.e., 𝜇 0) conditions. With frictional tangential 
stresses, the system is more compliant, resulting in a larger contact area compared to frictionless 
contact. Additionally, the contact penetration (i.e., the extent to which the rigid profile 
penetrates the deformed layer surface) is much higher with friction. Specifically, the leading 
edge of the contact (the right-hand contact edge in the figure) under frictional conditions is 
significantly shifted in the sliding direction compared to the frictionless case, while the trailing 
edge (the left-hand contact edge in the figure) is less affected by coupling, though a certain 
difference can still be reported at different values of the Coulomb friction coefficient 𝜇 . 
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Figure 2: line contact results. (a) the effect of Coulomb friction coefficient 𝜇  on the normal displacements of 
the layer surface (results refer to ℎ/𝜆 0.16 and 𝑝 / 𝐸∗𝛬/𝜆 3). (b) the normalized contact size (with a  
being the contact size in frictionless conditions) as a function of the normalized contact mean pressure (results 
refer to ℎ/𝜆 0.16). (c) the normalized additional friction coefficient Δ𝜇 (with �̅� being the indenter root mean 

square gradient) induced by coupling as a function of the normalized contact mean pressure (results refer to 
ℎ/𝜆 0.01). (d) the normalized contact size (a  refers to frictionless conditions) as a function of the normalized 

layer thickness (results refer to 𝜇 0.5). 

Quantitative conclusions can be drawn from Fig. 2 (b), which shows the ratio 𝑎/𝑎  as a 
function of dimensionless mean contact pressure 𝑝 / 𝐸∗𝛬/𝜆 , with 𝑎 being the contact size in 
frictional conditions and 𝑎  that in frictionless sliding. The results are compared for different 
values of the Coulomb friction coefficient 𝜇 . At very low contact pressures, since only the 
roughness tips are involved in the contact, the statistical content of the results is reduced, which 
in turn leads to a certain noise in the numerics. Nonetheless, consistently with what observed 
in Fig. 2(a), the contact area is larger when frictional interactions occur at the contact interface, 
compared to the frictionless case. The increase in contact area due to friction is of engineering 
interest in many applications involving finite thickness bodies in sliding contact, such as tire-
road interactions and the electrical conductivity of sliding electrodes. For instance, up to a 10% 
larger contact area can be observed with high friction coefficients typical of tire-road interfaces, 
and even with lower friction coefficients, the contact area increase is about 2-3%. Furthermore, 
Fig. 2(b) aligns with Fig. 2(a) regarding penetration differences between frictional and 
frictionless contacts under the same mean pressure, as a larger contact area results in a stiffer 
contact response due to more material being involved in deformation. 

An additional friction opposing the relative sliding motion between the rigid indenter and 
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the elastic layer may occur due to asperities interlocking. This scenario might also involve a 
relative eccentricity between the pressure distribution and asperities' shape. As shown in Fig. 
2, the significant asymmetry of the contact area across each asperity shifts the contact pressure 
distribution towards the leading edge of each contact spot. Under these conditions, interlocking 
friction occurs. The associated additional friction coefficient Δ𝜇 can be calculated using Eq. 
(11) and is reported in normalized form in Fig. 2(c) as a function of the dimensionless mean 
contact pressure 𝑝 / 𝐸∗𝛬/𝜆 . Normalizing the interlocking friction coefficient Δ𝜇 by the root 
mean square gradient �̅� of the rough profile is appropriate because several contact mechanics 
theories [3,4] suggest a proportionality between Δ𝜇 and �̅�. Regardless of the value of the 
Coulomb friction coefficient 𝜇 , increasing the mean contact pressure leads to higher 
interlocking (i.e., Δ𝜇 values). However, at relatively high mean pressures, Δ𝜇 is almost 
constant, as above a certain pressure, the leading edge of each contact spot can no longer shift 
in the sliding direction, resulting in maximum contact area eccentricity against the asperities. 
Additionally, given a certain surface (i.e., the value of �̅�) increasing the Coulomb friction 
coefficient 𝜇  results in a reduction of the relative additional friction coefficient Δμ/𝜇 . 

 
Figure 3: the normalized additional friction coefficient Δ𝜇 induced by coupling in areal contacts as a 
function of the normalized contact mean pressure (�̅� is the indenter root mean square gradient). 

Finally, Fig. 2(d) shows the effect of the normalized layer thickness ℎ/𝜆 on the ratio 𝑎/𝑎 . 
As predicted by Eqs. (5,8), geometrical coupling rapidly decreases with increasing layer 
thickness: indeed, the contact area enhancement due to in-plane and out-of-plane coupling 
significantly reduces with ℎ/𝜆 increasing. Eventually, for ℎ/𝜆 0.5, the rigid substrate is far 
enough from the contact interface so that weak material confinement occurs and coupling 
effects become negligible.  

3.2 Areal contacts 

Calculations have also been performed for areal contacts, exploiting GFMD contact 
mechanics methodology. This time, the Green’s tensor is 3-dimensional and is given in Ref. 
[37]. 

Frictional results are shown in Fig. 3 where the normalized additional friction coefficient Δ𝜇 
induced by in-plane and out-of-plane elastic coupling is reported as a function of the normalized 
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pressure 𝑝 / 𝐸∗ℎ/𝜆 . Notably, we change the pressure normalization factor (with respect to 
Fig. 2) to simplify the results comparison against different layer thickness values, which entails 
different contact stiffness [20-23]. Areal contact confirm the same trend as in line contacts, with 
higher relative additional friction coefficient Δμ/𝜇  associated to lower Coulomb friction 
coefficient 𝜇 . Increasing the contact mean pressure increases the coupling-induced additional 
friction coefficient Δμ up to a peak value, while a reduction is observed at very high pressures. 
The main reason for this behavior is that surface gradients in Eq. (11) at the contact edges 
initially increase with load and, as the contact dimension grows, eventually decrease due to the 
sinusoidal characteristics of the roughness profile.  

4 CONCLUSIONS 

In this paper, we summarize our key findings on the rough contact mechanics of thin elastic 
layers in sliding contact with a rigid profile, for both line and areal cases. We assume local 
Coulomb friction at the interface, leading to coupling between the in-plane and out-of-plane 
elastic fields due to the finite thickness of the layer. This coupling persists even in 
incompressible materials, such as rubber-like polymers. 

Our results indicate that the coupled behavior at the interface significantly influences both 
the real contact area and the overall frictional response. Specifically, we found that the contact 
area can increase substantially compared to the frictionless case under a given normal load. 
This increase is primarily due to the different displacements at the interface, allowing deeper 
penetration of the rigid indenter into the deformable thin layer. 

Interestingly, because the displacement field and pressure distribution exhibit some 
eccentricity with respect to the asperities, interlocking friction occurs. This results in an 
additional friction term which sums to the Coulomb friction and opposes the relative sliding 
between the surfaces. 
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