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Summary. In recent years, there has been a growing interest in hard-magnetic soft materials
(HMSMs) due to their capacity to retain high residual magnetization and undergo significant
deformation when subjected to external magnetic loading. The performance of these materials
in dynamic actuation modes is substantially affected by temperature. This article introduces a
theoretical framework for modeling the dynamic behavior of hard-magnetic soft materials. The
neo-Hookean material model is employed to account for the thermal properties of the HSM ma-
terials. The governing equation for dynamic motion is derived using Euler-Lagrange’s principle
for nonconservative systems, allowing the characterization of nonlinear oscillations under both
constant and periodic magnetic fluxes. Dynamic stability, resonance properties, dynamic re-
sponse, and periodicity are characterized using frequency response spectra, time history graphs,
phase-plane diagrams, and Poincaré maps. The investigation seeks to comprehend the transi-
tion from periodic to quasi-periodic oscillation behavior of actuators. These findings represent an
initial step towards designing and developing remotely controlled actuators for various futuristic
applications.

1 Introduction

Soft magnetoactive polymers (SMAPs), a class of smart soft active materials, undergo large
mechanical deformation when subjected to an external magnetic field and are classified based
on the composition and arrangement of their magnetic components, such as magnetic particle-
based, magnetic fiber-based, ferrogel-based, and magnetic liquid crystal elastomers. In recent
years, Hard-magnetic soft materials have gained significant attention due to their exceptional
properties, including their response to external stimuli, quick actuation, flexibility, and stretch-
ability, and have a wide range of potential applications, such as in soft robotics, actuators,
microfluidics, and biomedical devices. These materials typically embed neodymium-iron-boron
(NdFeB) microparticles into the soft matrix. These magnetic particles can retain their mag-
netism even after removal of the external magnetic field due to their high remanence, which
allows them to retain a strong magnetic moment density along desired directions (i.e., vertical,
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horizontal, and inclined directions). The HMS actuators generally experience very large and
nonlinear deformation, which significantly affects the inherent properties of the material.

The primary characteristic of HMSMs is that when a relatively small magnetic induction is
applied externally, it results in instantaneous and significant deformations of the magnetorhe-
ological elastomer [14, 23]. To present the recent developments in continuum theories of HMS
materials, Kalina et al. [9] and Zhao et al. [28] investigated the structural properties of the soft
magnetorheological elastomers to model the magnetic hystereses. The HMS materials exhibit
time-dependent deformation relying on the viscoelasticity of the polymer matrix, which influ-
ences the actuation rate. To incorporate the viscous contribution, Garcia-Gonzalez [7] proposed
a continuum model for hard-magnetic soft materials to implement a finite element framework
within a thermodynamically consistent system.

For the design and development of actuators that are based on specifically hard-magnetic
soft materials, it is necessary to explore the underlying fundamentals of mechanics and concepts
of magnetoactive soft materials based on HMSMs. In this regard, [28] presented an asymmetric
Cauchy stress tensor based nonlinear field theory of HMSMs for investigating the magnetically
induced response of the actuators. The proposed nonlinear field theory became the foundation
for the beams made up of HMSMs [25, 22, 19, 3]. Further, [6] improved the proposed formulation
of [28] by accounting for the viscoelastic effects and determine the time-dependent dissipative
response of the HMSMs. [7] recently presented a nonlinear continuum framework to model the
impact of the viscosity on the magneto-mechanical response of the actuator under statically
and dynamically applied loading conditions. [15] presented a dissipative model for HMSMs that
explored the impact of ferromagnetic hysteresis and particle volume fraction. [26] presented an
efficient computational framework to explore the decomposition of the deformation energy into
stretching and lattice volumetric changes. [4] proposed a conceptual model to characterize the
complex transformations of hard-magnetic soft beams. Further, they presented a theoretical
3-dimensional framework to analyze the high strains of HMSM beams and described the design
guidelines for the optimization of HMS structures [3]. Furthermore, they developed a theoretical
model for capturing the magneto-mechanical response of functionally graded HMS beams [5].
[27] presented a theoretical model based on micromechanics to investigate the influence of the
hard-magnetic particles interacting with the soft membrane and its response on the actuation
performance of HMSMs. [8] presented a unified FEA model for the investigation of hard and
soft particle-based magnetoactive membranes considering the visco-elastic effects to simulate
a magnetically driven robotic gripper. Additionally, a detailed review of the modeling and
characterization of hard-magnetic soft composites can be recapitulated from the article [13].

Most of the existing literature has focused on the quasi-static mode of deformation. How-
ever, the dynamic behavior of the HMSAs has been addressed in a few studies. An early work
is presented by Xing and Yong [24] in this regard who developed a lumped parameter dynamic
model for a planar HMSA driven by constant and periodic magnetic fields. They modeled the
constitutive behavior of HMSMs using the neo-Hookean model of hyperelasticity. [16] developed
a command shaping scheme for mitigating the residual vibrations in hard-magnetic soft planar
actuators to align their position to the desired. Further, he proposed a theoretical dynamic
model for modeling a HMSA considering the effect of strain stiffening and further designed an
input-shaping scheme for aligning the dynamic response of the actuator to the desired position
without any residual vibrations. In this regard, very recently, some efforts have been made
by Nandan et al. [18] to model the viscous effects in order to characterize the relaxation and
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dissipation effects under deformation of the HMS actuators when subjected to external mechan-
ical and magnetic loading. Further, he investigated the oscillation modes of the HMSM-based
viscoelastic actuator and observed its sub-harmonic, harmonic, and super-harmonic resonant
frequencies, neglecting the effect of the polymer chain properties. In addition to this, Nandan et
al. [17] investigated that the polymer chains have a limiting length. The inherent characteristics
of the polymer chains significantly affect the performance of the smart active material-based soft
actuators. Furthermore, relatively few studies have addressed the dynamic behavior of the HM-
SAs [24, 16, 18]. In the aforementioned theoretical studies, the HMS actuator was considered to
operate in isothermal conditions, and the constitutive behavior of HMSMs is modeled, neglecting
the thermal properties of the HMS material. However, the actual soft polymer properties are
significantly affected by the effect of temperature which transforms the desirable properties of
such smart polymers. Further, some experiments suggest that the behavior of the soft material
is totally different under varying temperature conditions [21]. Based on the non-equilibrium
theory of thermodynamics, temperature affects the dynamic properties and physical interpreta-
tion of the hard-magnetic soft materials. To the best of author’s knowledge, there is a scarcity
of research work that models the dynamic response of the HMS actuator undergoing temper-
ature variation. Therefore, the current work focuses on developing a novel formulation using
the Euler-Lagrange equation with the objective of capturing the thermal effect on the nonlinear
deformation of HMSAs. For efficient and accurate modeling of the dynamic properties, this
study shows how the temperature affects the time-dependent response of the HMS actuator
undergoing constant and periodic magnetic loading and in the design of smart and remotely
controlled devices. Then, the dynamic oscillation, phase diagrams, and Poincare´ maps of the
viscoelastic elastomer are studied. A detailed analysis shows the influence of the temperature,
frequency, and viscoelasticity on the dynamic stability and the hysteresis.

The current study is structured into the following sections. 2 presents the problem definition
and describes the thermoelastic material model utilized to investigate the effect of tempera-
ture on the transient response of an HMS actuator. 3 outlines the derivation of the governing
equations characterizing the dynamic motion using the principle of least action based on Euler-
Lagrange’s equation. 4 explores the effect of temperature and prestress on the nonlinear dynamic
response of the HMS actuator under a constant and periodic magnetic flux density. Finally, 5
discusses the noticeable inferences drawn from the current work.

2 Problem description

In this study, we consider a typical planar model of the HMSA as depicted in fig. (1a).
The coordinates [X1, X2, X3] and [x1, x2, x3] denote the coordinate of a material point in the
reference and the spatial configurations, respectively. The initial geometrical dimensions of
the actuator in the principal directions prior to deformation are 2L1 × 2L2 × 2H. We assume
that the actuator undergoes homogeneous deformation when subjected to in-plane equal bi-
axial mechanical forces (P1 and P2) in the X1 and X2-directions, respectively, and the magnetic
flux density vector (Bapplied) in the X3-direction as shown in 1(b-c). Meanwhile, the operating
temperature varies from T0 to T . The dimensions of the actuator in the spatial configuration are
denoted as 2l1 × 2l2 × 2h. Following the principles of continuum mechanics, the motion of the
planar actuator or the relation between the spatial and the reference co-ordinates is expressed
as
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Figure 1: Schematic of the deformation of a planar hard-magnetic soft actuator subjected to an equal
bi-axial mechanical loading (P ) and a magnetic flux density (Bapplied).

λi(t) =
xi(X1, X2, X3, t)

Xi
(1)

where λi(t) being the function of time only represents the principal stretches along the Xi

directions, respectively. Following the incompressibility constraints, the stretch in X3-direction

will be λ−1
1 λ−1

2 and in-plane nominal stresses are given by σ1 =
P1

L2H
and σ2 =

P2

L1H
in the X1

and X2-directions, respectively.

The applied magnetic field vector Bapplied, the residual magnetic flux density vector Br, and
the deformation gradient tensor F, respectively, are defined as

Bapplied =

 0
0

Bapplied

 , Br =

 0
0
Br

 , F =

 λ1 0 0
0 λ2 0

0 0 λ−1
1 λ−1

2

 . (2)

We adopted an incompressible neo-Hookean model of hyperelasticity [28] for modeling two
nonlinear springs of the Zener rheological model. The damper is characterized by a parameter
η. Based on the neo-Hookean model and additive decomposition of total strain energy into
isotropic equilibrium and inelastic parts, the total strain energy density (per unit volume) of the
material model is written as

Ψstrain =
µ

2

(
λ21 + λ22 + λ−2

1 λ−2
2 − 3

)
︸ ︷︷ ︸

Equilibrium

(3)

where µ represents the shear modulus.
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The work done by the bi-axial forces P acting perpendicular to the applied magnetic flux
density is expressed as

WP = 8L1L2H [σ1 (λ1 − 1) + σ2 (λ2 − 1)] (4)

where σ1 =
P

4L2H
and σ2 =

P

4L1H
.

In our work, the HMS actuator is subjected to a homogeneous, equi-biaxial force P, so the
nonlinear governing equation can be defined using σ1 = σ2 = σ and incompressibility constraint
λ1 = λ2 = λ in 4. Now, the dynamic equation can be given as

Ψstrain =
µ

2

(
2λ2 + λ−4 − 3

)
, (5a)

W = 8HL2 [2σ (λ− 1)] (5b)

The specific free energy density function of a thermoelastic hard-magnetic soft polymer is
given as

Ψ(λ, T ) =
T

T0
Ψstrain(λ) + ρc

[
T − T0 − T ln

(
T

T0

)]
. (6)

We adopted an ideal thermoelastic hard-magnetic soft material model [28], and its free energy
density is written as

Ψ = Ψ(λ, T )−
FBr ·Bapplied

µ0
= Ψ(λ, T )−

BrBapplied

λ2µ0
, (7)

where µ0 denotes the vacuum permeability.

In the subsequent section, using the Euler-Lagrange equation of motion along the material
model presented in this section, we devise the equations governing the nonlinear dynamics of
the HMS actuators.

3 Dynamic governing equations

We devise the ordinary differential equations (ODEs) governing the dynamic characteristics of
the considered planar viscoelastic HMSA using the non-conservative form of the Euler-Lagrange
equation of motion

d

dt

(
∂L

∂λ̇

)
− ∂L

∂λ
+
∂D

∂λ̇
= 0; (8)

where λ̇ denotes the time derivatives of the total stretch parameter λ; (L = T − U) signifies
the Lagrangian, where T and U are the total kinetic and the potential energies of the actuator,
respectively; and D is the energy dissipation function.

Upon integrating the free energy function (6) over the deformed configuration of the actuator,
the total strain energy of the actuator is obtained as
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SE =

∫
ψdx1dx2dx3 = 8HL2

[
T

T0

µ

2

(
2λ2 + λ−4 − 3

)
+ ρc

[
T − T0 − T ln

(
T

T0

)]
−
BrBapplied

λ2µ0

]
.

(9)
Defining the work potential due to external mechanical prestress i.e., WP = −W and using

SE expression from 11, the total potential energy of the actuator is expressed as follows

U = SE+WP = 8HL2

[
T

T0

(µ
2

(
2λ2 + λ−4 − 3

))
+ ρc

[
T − T0 − T ln

(
T

T0

)]
− 2σ (λ− 1)−

BrBapplied

λ2µ0

]
,

(10)
The expression for the kinetic of the actuator is obtained as follows

T =

∫
1

2
ρ
(
ẋ21 + ẋ22 + ẋ23

)
dx1dx2dx3, (11)

where ρ denotes the mass density of the HMSM. Inserting the expressions for the spatial
coordinates from 2 into 10 and evaluating the integration over the deformed actuator configura-
tion, the kinetic energy of the actuator in terms of stretch rate and stretch parameter is written
as [20, 11]

T = 8HL2

(
1

3
ρλ̇2L2 +

2

3
ρH2

(
λ̇2

λ6

))
. (12)

Substituting Eqs. 11-12 into 10, the system of ordinary differential equations governing the
dynamic behavior of viscoelastic hard-magnetic soft planar actuator is obtained as

λ̈

(
ρL2 +

2ρH2

λ6

)
− 6ρH2

(
λ̇2

λ7

)
+ 3

[
µ

(
T

T0

)(
λ− λ−5

)
− σ +

BrBapplied

λ3µ0

]
= 0, (13)

In this analysis, we consider that the actuator starts from the rest configuration, and the
initial conditions corresponding to the rest position are characterized as follows

λ|t=0 = 1;
dλ

dt

∣∣∣∣
t=0

= 0, (14)

In the upcoming section, we will investigate the effect of viscoelasticity on the dynamic
behavior of a hard magnetic soft actuator subjected to the constant and the periodic magnetic
loading conditions using the governing differential equations (12) and initial conditions (13).

4 Results and analysis

We now perform a parametric study for elucidating how the temperature rise in the HMSM
and prestress affect the dynamic response of the planar HMSA. We will utilize the dimension-
less quantities for conducting the dynamic analysis. By defining the following dimensionless
quantities
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c = H2/L2; S = σ/µ; τ = t
√
µ/ρL2; b2 =

BrBapplied

µµ0
, (15)

the governing differential equations (13) and the initial conditions (14) are expressed in the
nondimensional form as follows

d2λ

dτ2

(
1 +

2c

λ6

)
−
(
dλ

dτ

)2 6c

λ7
+ 3

[(
T

T0

)(
λ− λ−5

)
− S + b2λ−3

]
= 0, (16)

λ|τ=0 = 1;
dλ

dτ

∣∣∣∣
τ=0

= 0, (17)

respectively, where τ is the dimensionless time parameter, c denotes a geometrical constant,
S is the dimensionless mechanical pre-stress, and b2 denotes the dimensionless magnetic flux
density. Here, it is worth noting that dimensionless magnetic flux density takes a negative value
b2 < 0, when the direction of the applied magnetic flux density is opposite to the direction of
residual magnetic flux density and the last term in 16 will be negative. In the present analysis,
dimensionless constants c are taken to be 1. We solved the aforementioned governing ODEs (16)
along with the initial conditions (17) using fourth-order Runge-Kutta method implemented in
MATLAB with ODE 45 solver. Further, we identify the nonlinear oscillations using time history
responses, phase-plane portraits, and Poincaré maps. In time history response plots, the stretch
in the x3 direction λ3 = λ−2 is plotted with the dimensionless time (τ) while phase-portraits
plot the stretch rate λ̇3 with stretch λ3. The Poincaré maps are obtained by selecting the period
of applied dimensionless magnetic flux density as a time step. The time history response shows
periodic motion when it presents predictable and regular trajectories, the Poincaré portrait
consists of a single point, and the phase-plane plot represents a closed loop. In contrast, a
quasi-periodic motion is defined when the time history response shows an irregular trajectory,
the appearance of a torus-shape in phase-plane portrait, and a closed curve of points in the
Poincaré map [2, 24, 1, 12, 10].

4.1 Response of actuator under constant magnetic flux density applied along the
residual magnetic flux density

In the first case, the HMS actuator was subjected to a constant magnetic flux density in
the same direction as the residual magnetic flux density (b2 > 0). We will now analyze the
dynamic behavior of the hard-magnetic soft actuator for three different temperatures: 250K,
350K, 400K. 2 shows the time history response of the HMS actuator in the x3-direction stretch
with dimensionless time for different levels of temperature with equi-biaxial prestress (S = 1)
and without prestress (S = 0). It is evident from 2 that for any level of temperature in both
conditions, the x3-direction stretch has the same trend and does not reach the equilibrium
condition over time. The planar actuator oscillates from the initial configuration to the final
equilibrium for different temperature levels in both conditions, indicating a significant effect of
the temperature. Further, it can be observed that the magnitude of the cyclic actuation stretch
is more at 250K than that of at 350K and 400K. Now, it can be deduced that the deformation
decreases with an increase in temperature.

The phase-plane plots were used to evaluate the effect on nonlinear behavior of the HMS
actuator by characterizing the stretch rate (dλ3/dτ) to x3-direction stretch (λ3). Figure (4)

7



Shivendra Nandan, Divyansh Sharma and Atul Kumar Sharma

(a) (b)

Figure 2: Time-history response of the hard-magnetic soft actuator with respect to different temperature
levels (T ) under constant magnetic flux density b = 0.4 [b2 > 0] and prestress level (a) (S = 0), and (b)
(S = 1).

(a) (b)

Figure 3: Phase-plane portraits of the hard-magnetic soft actuator with and without bi-axial prestress
(S) and under constant magnetic flux density b = 0.4 [b2 > 0] and for varying temperature levels (a)
S = 0 and (b) S = 1.

8



Shivendra Nandan, Divyansh Sharma and Atul Kumar Sharma

illustrates that the planar actuator oscillates for both prestress and without prestress conditions
and forms a closed loop. It is evident that the actuator expands in the x3 direction (λ3 > 1)
under magnetic loading without mechanical prestress (S = 0), while experiencing compression
(λ3 < 1) with prestress (S = 1) for (b2 > 0). This finding indicates that the effect of pre-
stress (mechanical loading) causes significant compressive deformation instead of the expansion
caused by magnetic loading. Furthermore, we observed similar oscillation behavior in both
the prestressed and without prestress modes of actuation, except for the variation in stretch
rate values. In an incompressible HMS actuator, the stretch in x3-direction decreases with an
increase in temperature. This is because the elastic modulus of the material decreases with
increasing temperature. When the temperature of an incompressible HMS actuator increases,
the actuator tries to vibrate more rapidly. This increased thermal energy causes the material
to become more compliant and less resistant to deformation. As a result, the elastic modulus
decreases, and the material becomes easier to stretch. So the stretching in an incompressible
HMS actuator decreases with an increase in temperature because the increased thermal energy
causes the material to become more compliant and less resistant to deformation.

(a) (b)

Figure 4: variation of the x3-direction stretch amplitude with dimensionless excitation frequency ω∗

of excitation magnetic flux density for varying temperature and prestress levels (a) (S = 0), and (b)
(S = 1).

In the case of periodic magnetic flux density, the frequency response spectrum is used to
characterize the periodic vibration intensity of a hard-magnetic soft (HMS) actuator with three
levels of temperature, as shown in 4. It is found that the resonant frequency of the actuator
increases with an increase in temperature, while the intensity of vibration decreases. This
indicates that temperature enhances the stiffness and modulus of the HMS actuators, resulting
in a rise in resonant frequency. However, Increased temperature also yields significant damping
that dissipates energy, leading to a decrease in vibration intensity. The resonance properties of
the actuator are analyzed, and it is considered that the resonance occurs at the λa3 peaks in the
frequency range. It is observed that the actuator without prestress (S = 0) shows higher resonant
actuation frequency and oscillation amplitude than that of the prestressed actuator (S = 1) for
temperature levels of 250K and 400K. However, for T = 300K, the actuator without prestress
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shows higher resonant actuation frequency and lesser oscillation amplitude than that of the
prestressed actuator. The dimensionless resonant frequency for the actuator without prestress
with T = 250K, 350K, 400K is calculated to be ω0 = 1.05, 1.25, 1.35, while the corresponding
value for the prestressed case is ω0 = 0.85, 1.08, 1.19. In 6 (a), it is illustrated that the planar
actuator vibrates most strongly and demonstrates the beating phenomenon. For the actuator
under periodic magnetic flux density, the beating generally occurs when the frequency of the
magnetic flux is close to the natural frequency. Further increases or decrease in temperature, the
phenomenon of beating disappears at resonant excitation frequency of 1.25. It can be observed
that as the temperature increases, the λa3 value decreases gradually without prestress condition
while it increases then decreases in prestressed condition, indicating that the effect of strong
temperature on nonlinear vibration. As the HMS actuator exhibits strong nonlinear vibrations
by increasing the temperature, the nonlinearity of the actuator may be enhanced.

In 6, the time history graph, phase-plane plots, and Poincaré maps for the HMS actuator are
presented. The actuator without prestress subjected to an excitation frequency of ω∗ = 1.25,
which is a resonant excitation frequency at T = 350K, is taken into consideration for different
temperature levels with the aforementioned actuation conditions. The phase-plane plots and
Poincaré maps are plotted to assess the dynamic stability and periodicity of the actuator. The
dynamic response of the actuator is demonstrated at a temperature of T = 250K (5(a) and
5(b)), T = 250K (5(c) and 5(d)) and T = 400K (5(e) and 5(f)) without prestress. It can be
deduced that all the phase-plane plots do not go to infinity, indicating the stable vibration of
HMS actuators. In 5(d), the disordered Poincaré map indicates an aperiodic vibration when
T = 350K. However, as depicted in 5(b) and 5(f), an increase or decrease in temperature
leads to ordered Poincaré maps forming closed loops, which indicate quasi-periodic vibrations.
Therefore, the variation of temperature, either an increase or decrease in temperature, tunes the
periodicity of the nonlinear vibrations of HMS actuators, resulting in a transition from aperiodic
vibration to quasi-periodic vibration.

Further, the actuator is excited with an excitation frequency of ω∗ = 1.08, which is also the
resonant excitation frequency at T = 350K with prestress conditions. The 6(a) and 6(e) shows
that the actuator displays stable periodic oscillations for the temperatures of 250K and 400K,
respectively, similar to the obtained actuation mode in the absence of mechanical prestress.
Further, it is also examined that the actuator without prestress achieves stability faster than
the prestressed actuator.

Furthermore, 6 also illustrates that the actuator exhibits aperiodic oscillation for the tem-
perature of T = 350K at resonant frequency and a stable periodic oscillation for both states
of prestress for the crosslinks parameter of T = 250K and 400K and deviates from its normal
response by forming a closed spiral, indicating the occurrence of resonance in the planar actu-
ator. Similar to the earlier cases of T = 250K, 350K, 400K, the actuator attenuates the stable
periodic oscillations more rapidly in the absence of prestress than the prestressed actuator at
resonant excitation frequencies.

It can be inferred from 5(a) and 5(b) that the response of the HMS actuator in the absence
of mechanical prestress (S = 0) is significantly similar to the prestressed actuator (S = 1).
The dimensionless excitation frequency of the prestressed HMS actuator rises compared to the
actuator without mechanical prestress for the same temperature. The time history graph along
with the corresponding phase-plane plots and Poincaré maps also presents similar results for the
actuator with mechanical prestress S = 1 in comparison to the actuator without mechanical
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(a) (b)

(c) (d)

(e)

Figure 5: Phase–plane portraits along with Poincaré maps of the actuator without prestress for different
levels of temperature levels and and frequency of excitation ω∗.
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(a) (b)

(c) (d)

(e)

Figure 6: Phase–plane portraits along with Poincaré maps of the actuator with prestress for different
levels of temperature levels and and frequency of excitation ω∗.
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prestress. This signifies the similar plots shown in 5 and 6.

5 Concluding remarks

In this article, an incompressible hyperelastic thermal based material model was considered
to define the constitutive behavior of the HMS actuator. An analytical framework of the HMS
actuator is presented by using Lagrange’s equation, which considers the effect of temperature to
investigate the dynamic stability, periodicity, dynamic response, and resonance properties. The
analysis was carried out by varying the level of the material properties for both prestress and
without prestress conditions in the dynamic mode of actuation when excited by constant and
periodic magnetic fields. The inferences of the study can be summarized as follows:

1. The actuator with prestress condition attains a higher level of deformation at the equi-
librium state compared to the case in which actuator is not prestressed for any value of
thermal parameter.

2. The actuator with prestress (S= 1) undergoes compression: large compressive deformation
because of mechanical loading over expansion due to magnetic loading.

3. This increased thermal energy causes the material to become more compliant and less
resistant to deformation. As a result, the elastic modulus decreases, and the material
becomes easier to stretch. So the stretching in an incompressible HMS actuator decreases
with an increase in temperature because the increased thermal energy causes the material
to become more compliant and less resistant to deformation.

4. In this analysis, the actuator undergoes oscillations from initial configuration to final
configuration and increase in temperature reduces oscillation stretch.

5. The variation of temperature, either an increase or decrease in temperature, tunes the
periodicity of the nonlinear vibrations of HMS actuators, resulting in a transition from
aperiodic vibration to quasi-periodic vibration.

The underlying analytical model, along with the inferences reported in the current analysis,
can help to understand the dynamic behavior of the thermal effects and serve as a guide in the
design and development of the futuristic remotely driven soft actuators executing time-dependent
motion.
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