
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

DIVERGENCE FREE VELOCITY INTERPOLATION FOR
SURFACE MARKER TRACKING

E. Aulisa1, G. Barbi2, A. Cervone2, A. Chierici1, F. Giangolini2, S.
Manservisi2 and L. Sirotti2

1 Texas Tech University, Department of Mathematics and Statistics, 1108 Memorial Circle,
Lubbock, Texas, USA

2 University of Bologna - DIN, Via dei Colli 16, 40136 Bologna (BO), Italy
e-mail: giacomo.barbi3@unibo.it

Key words: Finite element interpolation, Raviart-Thomas basis function, interface tracking,
multiphase flow, divergence-free velocity

Summary. In the context of multiphase flow simulation, the interface tracking has a crucial
role in order to properly preserve the mass of a specific phase and compute all the quantities
related to the position of the interface such as the surface tension. In this work, we exploit a
point-wise divergence-free finite element representation of the velocity field to improve the mass
conservation features of a surface tracking technique based on the reconstruction of the interface
through a best-fit quadratic interpolation of a set of markers. In fact, the divergence-free con-
dition of the velocity is strictly related to the mass conservation and can achieve better results
than classic bi-linear or bi-quadratic finite element interpolations. The Raviart-Thomas inter-
polation guarantees that the reconstruction of the field is appropriately divergence-free in each
point of the computational domain, differently from the finite element Lagrangian interpolation
that is only divergence-free in the weak form (i.e. when integrated on a cell of the domain).
The interface tracking technique adopted in this work is based on the marker technique, through
which the surface equation is found as the best-fit quadric approximation of the marker positions
that are advected in time through a Runge-Kutta 4th order algorithm. The approach is tested
with a set of kinematic examples that stress the advection algorithm due to deformation of the
initial surface configuration, and compared to the classical Lagrangian interpolation techniques.

1 INTRODUCTION

It is well known that mass conservation is a key feature when numerical simulations of certain
types of fluids are considered, such as multiphase flows. This feature can be easily understood
if we suppose that the density of the considered phases is represented by a constant value.
Therefore, the classical constraint of the vanishing velocity divergence is a natural consequence,
that must be addressed with the most suitable numerical tools.

In this work, a divergence-free representation of the velocity field is considered by using the
Raviart-Thomas finite element family [1]. With this kind of approximation, the velocity field lies
in the space H(div), defined as the space of square-integrable function with the divergence in the
L2 space. In particular, it is possible to represent a pointwise divergence-free field avoiding the
concept of the weak divergence connected to the standard finite element discretization [2]. In this

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

work, we exploit the lowest-order Raviart-Thomas finite element family (RT0) to approximate
a velocity field in the framework of a multiphase flow problem, to compare this representation
with a standard approximation by using a Lagrangian finite element family such as Taylor-Hood.

Additionally, our study is focused on addressing the treatment of the interface between the
multiphase phases. Although numerous numerical techniques and algorithms have been devel-
oped over the years in the literature to address this issue (VOF, Level Set method, etc.) [3], our
attention is drawn to the Front Tracking Method [4].

This methodology has gained interest, particularly in interface tracking within multiphase
flow simulations. Different approaches have been explored [5, 6], focusing on marker recon-
struction. We introduce a novel numerical algorithm for surface advection on two-dimensional
domains, emphasizing marker reconstruction by using the best-fit quadratic interpolating equa-
tion. The basic idea of this technique is to advect a set of points that represent the interface,
from the initial configuration, with the objective of preserving the topology information of the
interface during the simulation transient. Various functions designed to manage marker posi-
tions and define interfaces between phases are described, and a comparison between two different
types of discrete velocity representation is presented.

This paper is structured as follows: in the first section, we outline the routines employed for
the interface approximation by using the marker technique. After that, we provide an overview
of the velocity field interpolation, with specific attention to the Raviart–Thomas finite elements.
Finally, the numerical results related to the interface advection are presented with a comparison
of two different types of velocity interpolation.

2 SURFACE MARKER ALGORITHM

2.1 Marker geometry initialization

The first step of the algorithm involves the implementation of an initialization function, to
define the set of the markers and their related parameters. This function is specifically designed
to define the initial geometry of the marker cloud, representing one of the two phases within
the domain. To achieve this, the library is equipped with two possible methods: the first one
provides an explicit set of points with related parameters; otherwise providing a generic bivariate
quadratic level-set function. Concerning the first method, it is sufficient to provide a complete set
of points along with their geometric coordinates, normal vectors, and curvature for each marker.
This allows the initialization of interface shapes that cannot be represented with a quadratic
function. Alternatively, the second method involves providing the equation of a generic conic
equation in the form:

f(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F , (1)

where the chosen initial geometry of the marker cloud defines the coefficients A, B, C, D, E, and
F . This function also allows the possibility of initializing multiple geometries based on different
chosen quadratic functions. After that, the markers can be inserted onto it by providing the
desired number of points for every cell. Therefore, giving np markers for each cell with their
corresponding points coordinates xp = (xp, yp), the unit normal vector n̂ and the curvature
value k can be calculated for each marker [7]. Moreover, the arc length ds associated with every
marker of the quadratic function is considered. To evaluate it, an osculating circle is built on
the conic connecting the arc length of a circular sector to ds and considering ds = Rdθ.

2

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

In addition to the marker initialization, another feature has been provided to identify different
phases inside the domain. In particular, at every node of the grid, the sign of the conic surface
is considered. If a cell is equipped with a negative sign at every node, that region is regarded
as the first phase, and an internal marker is placed at the center of the cell. The advection
step is also applied to this new marker inside the cell, to manage the color function variable.
Otherwise, if the sign of the conic is positive at every grid node, it indicates the second phase.
The third option arises when a cell has nodes with different signs of the conic, representing the
set of boundary cells, that are indeed cut by the surface quadratic function.

2.2 Color function evaluation

In the context of multiphase simulations, the tracking of the two phases is an essential re-
quirement. To address this need, the library includes a function capable of evaluating the value
of the color function C for every cell. This variable serves as a tool for monitoring the phase
under consideration and represents the ratio between the area occupied by one of the two phases
Ac and the total area A of the respective cell. Indeed, the value of C varies between 0 and 1,
with the extremes of this interval representing the different phases. To illustrate, considering a
bubble (phase 1) inside a domain (phase 2), the interior phase can be associated with C = 1,
while the exterior phase is represented by C = 0. Therefore, C can be defined as C = Ac/A.

The value of Ac is computed by implementing a linear fit of the interface cell markers,
providing the best approximation of these points in the cell with a line. In order to evaluate
the area of the interior phase, the linear fit is employed using an exact subdomain polynomial
integration [8] implemented for finite elements with linear cuts. As a result, the value of C is
a piecewise constant for every cell in the domain. On the other hand, the library also provides
the evaluation of a pointwise color function Cn, defined on the grid nodes. Note that, since the
advection of a phase can produce thin filaments, the evaluation of Cn requires some attention.
Initially, every node inside a cut cell is assigned with a value equal to 0.75 if the sign of the
quadratic equation is positive. Otherwise, for the grid nodes with a negative conic sign, we fix
the value at 0.25. These values on the grid nodes remain unchanged for boundary cells, i.e. the
cells containing the markers. However, for the internal cells, described by C = 1, a check on the
nodes is performed in order to assign Cn = 1 on every node.

2.3 Runge-Kutta advection scheme

After the initialization routine, the marker located on the quadratic function for each bound-
ary cell and the central marker are ready to be advected by a velocity field. In particular, in
order to test the library the preliminary simulations have been performed considering an analyt-
ical velocity field, without implementing and resolving the Navier-Stokes type equations. On the
other hand, the numerical scheme adopted for the advection does not change in the presence of
a fully solved velocity field, which derives for example from the resolution of the Navier-Stokes
system in the context of multiphase flow simulations.

In the library, the standard Runge-Kutta method has been implemented in order to move the
markers in the cell. Although the simulations performed use a 4-th order Runge-Kutta scheme,
the library provides the flexibility to perform a generic n-th order scheme. In this section, the
4th-order scheme is described to recall standard results present in the literature about discretized
advection schemes. Therefore, considering an initial time t0 and a fixed time step interval ∆t,

3

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

the initial value problem is defined as

dx

dt
= v(x, t) , with x(t0) = x0 , (2)

where v is the velocity field function of the space x and the time t, and x0 represents the initial
position. To evaluate the position, i.e., the spatial coordinates xi for the i-th marker at the time
t, we need to solve the following relation

xi(t) = xi(tn−1 +∆t) = xi(tn−1) +
1

6
(k1 + 2k2 + 2k3 + k4)∆t , (3)

where the coefficients ki are defined as

k1 = v (x(tn−1), tn−1) , k2 = v

(
x(tn−1) + k1

∆t

2
, tn−1 +

∆t

2

)
,

k3 = v

(
x(tn−1) + k2

∆t

2
, tn−1 +

∆t

2

)
, k4 = v (x(tn−1) + k3∆t, tn−1 +∆t) .

This numerical scheme is performed at every time step and in every cell to represent the surface
motion by moving the markers. This step serves as the initial configuration for the next section,
where, starting from the advection result, the rebuilding of the marker position is performed
when certain conditions are not satisfied.

2.4 Best-fit quadratic function

After the marker advection for every cell, a crucial aspect of the algorithm is the computation
of a conic equation that represents the best-fit approximation of the marker positions. This is
achieved by exploiting the information about the marker of a single cell at a specific time step,
i.e. position, the normal vector, along with the markers from neighboring cells. The resulting
function is then selected from an ellipse, a hyperbola, or a parabola. In particular, the least-
square minimization approach is employed to determine the coefficients corresponding to these
types of conics, and a criterion is implemented to choose the best one among the three. To briefly
summarize, the algorithm for seeking the best-fit bivariate quadratic equation relies solely on
the relative positions of the markers.

The first step of the minimization process involves evaluating the barycenter in the cell,
considering a weighted set of markers instead of the classical geometrical barycenter. This step is
performed using the arc length variable s of each marker, allowing the detection and penalization
of regions with a high density of markers (i.e. marker cluster resulting from the advection
routine). In particular, the weighted markers are evaluated with a Gaussian distribution curve
that depends on the distance between the specific marker and the barycenter, considering also
the marker of the neighboring cells. Therefore, the square distance between the barycenter xc

and the i-th with coordinate xi is defined as

d2i = (xi − xc)
2 + (yi − yc)

2 . (4)

The variance related to the Gaussian curve is computed as

σ2 =

∑n
i=1 d

2
i

nfσ
, (5)

4

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

where n represents the total number of considered markers, including the markers of the neigh-
boring cells. Additionally, the parameter fσ can be chosen in order to penalize markers that are
distant from the barycenter differently. Therefore, the weight for the i-th marker can be defined
using the variance as

wi = s e−
d2i
2σ2 , (6)

by which, a new barycenter point xg can be determined as

xg =

n∑
i=1

xiwi . (7)

Let δi =
√
(xi − xg)2 + (yi − yg)2, and δmax = max (δi), i = 1, · · · , n and consider the variables

χi = (xi − xg)/δmax and ψi = (yi − yg)/δmax. With these new variables, we can build a new
quadratic cost function to be minimized, i.e.

∑n
i=1wi(Aχ

2
i +Bχiψi +Cψ2

i +Dχi +Eψi + F)2.
Hence, we want to find the coefficients X = [A,B,C, . . .] related to the new entries of the cost
function matrixM . Therefore, for every marker we can build a corresponding rowM(i,) that fills
the matrix M which is then decomposed with the Jacobi Singular Value Decomposition (SVD)
technique. In particular, for a quadratic interpolation, the six matrix entries are expressed as

M(i,) =
[
χ2
i , χiψi, ψ2

i , χi, ψi, 1
]
. (8)

Since the matrixM is built, the Jacobi decompositionM = USV ∗ is performed by exploiting the
linear algebra library Eigen [9]. In particular, considering the right singular vector V matrix,
the conic coefficients X that represent the best-fit approximation of the marker position are
taken from the last column of V , which represents the minimum eigenvector of the matrix [10].

On the other hand, our analysis has shown that the previous steps are not sufficient to find
the best conic coefficients in every cell. Neglecting information about the normal vector can lead
to quadrics that are in good agreement with the marker positions, but are not representative
of the real interface position. For example, considering a parabola, a method to mitigate this
aspect is to align the conic with the principal direction of the marker cloud. Specifically, we can
define the n× 2 matrix X, for which the i-th row can be filled with

X(i,) = [xi − xg, yi − yg] . (9)

Therefore, if we consider the square matrix B, equal to B = XTX and with dimension 2×2, the
eigenvector corresponding to the minimum eigenvalue of B represents the principal direction.

After that, we consider for every marker its outer normal, i.e. n̂old
i and also n̂i,quad rep-

resenting the outer normal vector of the three evaluated conic (ellipse, hyperbola, parabola).
Therefore, an additional cost function is built such that, for each conic, computes the value of
the distance between the markers and the best-fit quadratic function with a penalizing term.
This one is evaluated considering the dot product between the previously cited normal vectors
n̂old
i · n̂i,quad. Finally, the best-fit conic corresponds to the one that is able to preserve the direc-

tion of the normal vectors most efficiently, i.e. the conic equipped with the lower value of the
cost function previously described.

5

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

2.5 Rebuilding marker position

Once the best-fit quadratic function based on the advected marker positions is found, we
have the option to rearrange the markers inside the cell. This feature gains interest since it
is not possible to control the marker distribution directly after advection. Indeed, the new
marker position depends solely on the imposed velocity field. Consequently, even if we start
with a homogeneous distribution of the marker inside the cell, this homogeneity may be lost
after advection, leading to regions with very high or low marker density. Thus, the ability
to regenerate markers with a better distribution based on the best-fit conic can be a useful
computational tool.

Furthermore, although the distribution can be managed with the rebuilding operation, we
are also interested in maintaining a controlled number of markers inside every cell. Hence,
the library is equipped with two parameters nmin and nmax, representing the minimum and
maximum number of possible markers inside the cell. Therefore, if the advection results in a
number of markers n for a cell that satisfies nmin ≤ n ≤ nmax, we do not apply the rebuilding
algorithm. Otherwise, we regenerate a fixed number of markers n0 inside the cell starting from
the best-fit quadratic equation.

However, the resulting conic does not allow for a direct remeshing of the markers inside the
cell. In certain situations, the conic obtained may have more than two intersections with the cell
edges, such as four intersections. To overcome this problem, we perform an adaptive refinement
of the cell until we obtain sub-cells with only two intersections with the quadratic equation.

After the adaptive refinement, each cell has only a double intersection, represented by x0 =
(x0, y0), x1 = (x1, y1), with the edges. The goal is to find the coordinates of the new set of
markers located on the conic. We start by finding the center coordinates of the osculating circle
to the conic, as

xc = (xc, yc) = xm − n̂

k
. (10)

In this case xm represents the mid-point between the intersections x0 and x1, n̂ is the outward
normal vector, and k is the quadratic function curvature evaluated at xm. After that, we evaluate
the angles between the center of the osculating circle xc and the intersections x1 and x0 as

θ0 = arctan

(
y0 − yc
x0 − xc

)
, θ1 = arctan

(
y1 − yc
x1 − xc

)
. (11)

In addition, we also define other two variables representing the differences between these angles
as

∆θ0 =

{
θ1 − θ0 if θ1 > θ0

2π + θ1 − θ0 if θ1 < θ0 ,
(12)

∆θ1 =

{
θ0 − θ1 if θ0 > θ1

2π + θ0 − θ1 if θ0 < θ1 .
(13)

Therefore, we introduce the angle θs and the angle variation ∆θ with the following conditions

if ∆θ0 ≥ ∆θ1 → ∆θ = ∆θ1 θs = θ1 ,

if ∆θ0 < ∆θ1 → ∆θ = ∆θ0 θs = θ0 .

6

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

We define now v = ⟨vx, vy⟩ as

vx = R0 cos

(
θs +

∆θ

2

)
, vy = R0 sin

(
θs +

∆θ

2

)
, (14)

where R0 =
√
(x0 − xc)2 + (y0 − yc)2 represents the radius of the osculating circle. Then, we

can compute the intersection between the conic and the line passing through the circle center
xc and with the direction given by the vector v. Finally, the new marker positions are found by
considering

xn = xc + tnv , (15)

where tn = min(t1, t2), and t1 and t2 are the solutions of a∗t2 + b∗t + c∗ = 0. In this case, the
normalized coefficients, defined with the ∗, are defined as follows

a∗ =
a√

a2 + b2 + c2
, b∗ =

b√
a2 + b2 + c2

, c∗ =
c√

a2 + b2 + c2
, (16)

where the a, b, c coefficients are defined considering the quadratic function coefficients, the point
xc and the vector v as

a = Av2x +Bvxvy + Cv2y , b = 2Avxxc +B(vyxc + vxyc) + 2Cvyyc +Dvx + Evy ,

c = Ax2c +Bxcyc + Cy2c +Dxc + Eyc + F .

Moreover, we are also able to update for the new marker the arc-length function ds as ds =
∆θ(R0 +Rn)/2, where Rn is the distance between xn and xc.

3 VELOCITY INTERPOLATION

This section introduces and motivates the initial integration of Raviart-Thomas basis func-
tions into the surface marker reconstruction library. The main objective is to compare the
performance of two different velocity field representations, considering interface advection tests.
As the Navier-Stokes equations are not solved here, the velocity field is specified using an ana-
lytical function, allowing the comparison of how the analytical velocity field approximation can
influence the simulation.

Numerical approximations of the velocity field are naturally stored through finite element
discretization, such as the classical 9-point biquadratic quadrilateral element. Similarly, the an-
alytical velocity is represented according to the specific data structure from mesh discretization,
with exact values only available at the standard degrees of freedom of the mesh elements. The
marker reconstruction library is designed to handle both kinematic and dynamic two-phase flow
simulations, accommodating scenarios where the velocity field is either imposed or fully resolved.

For computing velocity at points beyond the nodes of the elements (e.g., marker coordinates),
interpolation is required. This is crucial for marker advection, where the Runge-Kutta method
needs varying velocity values at different positions. This work compares two finite element inter-
polation techniques for determining the velocity field at marker locations: standard Lagrangian
interpolation and Raviart-Thomas interpolation. The velocity field umrk of the i-th marker
located at coordinates xp is compared using the following formulations

umrk =

ndof∑
i=1

uiφi(xp) umrk =

nfaces∑
i=1

bi(xp)pi , (17)

7

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

where ndof represents the biquadratic nodes for a quadrilateral element, and nfaces is the number
of faces of the same element. Here, φi denotes the biquadratic Lagrangian basis functions, while
bi are the Raviart-Thomas basis functions acting on the flux face values pi. Since the computa-
tional domain is a standard two-dimensional Cartesian mesh, issues related to the convergence
of Raviart-Thomas finite elements do not arise. Notably, Raviart-Thomas finite elements pre-
serve only the normal component of the velocity through the element faces, while the tangential
component may not be preserved.

The reason for using Raviart-Thomas basis functions for velocity interpolation is driven by
two key factors: first, mass conservation in multiphase flow, where constant density in both
phases necessitates satisfying the mass conservation equation. A divergence-free velocity field
is crucial, and Raviart-Thomas discretization effectively addresses this requirement. Second,
the divergence-free property of the velocity fields used in advection tests, which are sinusoidal
functions derived from stream functions, aligns with the H(div) basis functions that should
provide an exact representation of the velocity field at every physical point. Specifically, for
the lowest-order Raviart-Thomas element RT0, the divergence is approximated with a constant
value, eventually zero, helping to avoid errors associated with standard Lagrangian interpolation.

In summary, the Runge-Kutta advection function has been adapted to support both inter-
polation methods. This implementation integrates two finite element libraries written in C++:
the FEMuSTTU library [11] for surface marker reconstruction, and the ProXPDE library [12]
for Raviart-Thomas finite element interpolation.

4 NUMERICAL RESULTS

4.1 Interface advection test

In this section, numerical results are presented in order to test the algorithm outlined above.
In particular, standard tests from the literature are considered benchmark results to evaluate
the interface tracking. Flow fields with uniform translations and rotations are used to move the
markers in the cells. The numerical tests discussed in [5, 6] are considered examples for the
results section. The basic advection motions are intended to shift smooth fluid bodies within
a domain while ensuring the preservation of surface shape and volume. The test presented is
a two-dimensional problem, with a velocity field characterized by a not uniform vorticity in
the domain. As a result, substantial distortions occur at the fluid body interface, complicating
its maintenance. To restore the initial configuration at the end of the period, time-dependent
analytical velocity functions with a sinusoidal profile are usually used [13].

To facilitate quantitative comparisons of the results, the L1 error norms presented in [5] have
been computed. We can define the relative mass error Em(t1) to compare the total volume of
a phase, in particular the reference volume, at the initial time t0 and the following time t1

Em(t1) =
|∑Nel

i=1AiCi(t1)−AiCi(t0)|∑Nel
i=1AiCi(t0)

. (18)

In the above definition, Ci(t) represents the color function value at the cell i at time t, Ai

represents the area of the cell i meanwhile Nel is the total number of the cells. We also introduce

8

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

another error, labelled as geometrical error Eg(t1), that can be defined as

Eg(t1) =

Nel∑
i=1

Ai|Ci(t1)− Ci(t0)| . (19)

As previously stated, the goal is to determine whether the final shape matches the initial
configuration. To this end, we introduced and calculated an additional type of error, using
a circular geometry as the initial shape. Thus, given the radius R and the center (xc, yc),
the distance between a marker m with position (xm, ym) and the center can be evaluated and
compared with the radius R. Therefore, we define Eal as

Eal =

Nm∑
m=1

∣∣∣√(xm − xc)2 + (ym − yc)2 −R
∣∣∣ sm , (20)

where, for each marker, the arc length is denoted by sm.
The method for evaluating the Raviart-Thomas basis functions for the velocity field inter-

polation involves a single bubble advection test. Therefore, the analytical velocity field used in
this simulation is provided by

u = 2 sin2(πx) sin(πy) cos(πy) cos

(
πt

T

)
,

v = −2 sin(πx) cos(πx) sin2(πy) cos

(
πt

T

)
.

The domain under consideration is defined as Ω = [−L/2, L/2]× [−H/2, H/2], with H = L = 1.
The initial circular geometry is centered at (0, 0.25) with a radius of R = 0.15. The period
T for this test is set to 4 s, meaning that the bubble reaches its maximum stretch at t = 2 s.
The objective is to compare the performance of a standard Lagrangian interpolation with the
Raviart-Thomas interpolation for the velocity field within the surface marker reconstruction
algorithm. The simulation evaluates how effectively each interpolation method preserves the
accuracy and conservation properties of marker positions during advection.

Table 1: Values of the Em, Eg and Eal errors for different grids, for the Q2 velocity interpolation.

Nel EQ
m EQ

g EQ
al

32× 32 1.64 · 10−2 1.00 · 10−3 9.66 · 10−4

64× 64 9.88 · 10−4 6.69 · 10−5 8.52 · 10−5

128× 128 2.35 · 10−4 1.65 · 10−5 1.36 · 10−5

Table 1 presents the error values for the Lagrangian-type interpolation, indicated by the
superscript Q, as a function of the number of mesh elements Nel, ranging from a 32× 32 grid to
a 128×128 grid. As expected, each calculated error decreases by increasing the mesh refinement.

The error analysis was also conducted for the RT0 velocity interpolation, with the results
presented in Table 2. For these simulations, similar conclusions can be drawn regarding the
evolution of errors: every computed error decreases with the grid refinement.

9

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

Table 2: Values of the Em, Eg and Eal errors for different grids, for RT0 velocity interpolation.

Nel ERT
m ERT

g ERT
al

32× 32 6.43 · 10−2 3.94 · 10−3 2.24 · 10−3

64× 64 1.57 · 10−2 1.07 · 10−3 5.79 · 10−4

128× 128 3.73 · 10−3 2.59 · 10−4 1.42 · 10−4

−0.2 −0.1 0.0 0.1 0.2

0.1

0.2

0.3

0.4

−0.2 −0.1 0.0 0.1 0.2

0.1

0.2

0.3

0.4

−0.2 −0.1 0.0 0.1 0.2

0.1

0.2

0.3

0.4

Figure 1: Single bubble test with Q2 velocity interpolation: comparison of the final interface position
at t = T (circular marker) with the initial circular geometry (dashed line) for the meshes with 32 × 32
(left), 64× 64 (center) and 128× 128 (right) cells.

When comparing the two techniques, the Q2 Lagrangian interpolation demonstrates better
error results. For each of the computed errors, the magnitude is generally about an order of
magnitude lower than that of the correspondingRT0 interpolation on the same grid. However, it
is important to note that these error values are based on the entire simulation, considering both
the final values of the color function and the marker positions. While the velocity interpolations
for markers may be quite similar within a cell, even a small variation in the velocity field
can cause a noticeable difference in the final marker position using the Runge-Kutta advection
scheme. Additionally, it is on this final position that every routine of the reconstruction library
acts, and thus the resulting best-fit approximating quadratic function can be different.

Figure 1 shows the final positions of the markers for various grid refinements using the stan-
dard Lagrangian Q2 interpolation. Notably, discrepancies from the analytical circular geometry
appear only for the coarser grid (32×32). As the grid is refined, the markers’ final configuration
aligns perfectly with the initial circumference by the end of the period.

Similar observations apply to the RT0 interpolation, as depicted in Figure 2. For the 32×32
grid, the final marker positions do not perfectly match the initial circular geometry.

In conclusion, the coupling by using Raviart-Thomas interpolated velocity has shown promis-
ing preliminary results, despite a slight deterioration in the computed error norm.

5 CONCLUSIONS

This work has focused on the challenges posed by mass conservation in incompressible flow
simulations, employing a finite element approach, with a particular focus on the use of Raviart-
Thomas basis functions. The main goal was to achieve a divergence-free velocity field, crucial
for accurate numerical solutions in engineering applications, ranging from multiphase flows to
porous-media flows.

10

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

−0.2 −0.1 0.0 0.1 0.2

0.1

0.2

0.3

0.4

−0.2 −0.1 0.0 0.1 0.2

0.1

0.2

0.3

0.4

−0.2 −0.1 0.0 0.1 0.2

0.1

0.2

0.3

0.4

Figure 2: Single bubble velocity with RT0 velocity interpolation: comparison of the final interface
position at t = T (circular marker) with the initial circular geometry (dashed line) for the meshes with
32× 32 (left), 64× 64 (center) and 128× 128 (right) cells.

We focused on multiphase flow simulations, emphasizing the significance of maintaining a
divergence-free velocity in scenarios where mass conservation is critical. The novel algorithm
introduced for surface advection using marker techniques has shown promising results, partic-
ularly in the context of interface tracking within multiphase flow simulations. Specifically, we
provide the possibility to advect a marker cloud representing a multiphase interface, and by
exploiting a best-fit interpolated quadratic function it is possible to create a new set of markers
that represents the surface in the new position. An interesting comparison has been performed,
exploiting specific characteristics of Lagrangian and Raviart-Thomas finite elements.

Further investigations will be performed, including the study of three-dimensional geometries
and the simulation of dynamic multiphase tests, which involve the resolution of the Navier-Stokes
system.

REFERENCES

[1] P. A. Raviart, and J. M. Thomas, Introduction à l’Analyse Numérique des Équations aux
Dérivées Partielles. Masson, Paris, France, 1983.

[2] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications.
Springer, New York, NY, USA, vol. 44, 2013.

[3] F. Chen and H. Hagen, “A survey of interface tracking methods in multiphase fluid visual-
ization,” in Visualization of Large and Unstructured Data Sets-Applications in Geospatial
Planning, Modeling and Engineering (IRTG 1131 Workshop), Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2011.

[4] S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompressible,
multi-fluid flows,” Journal of computational physics, vol. 100, no. 1, pp. 25–37, 1992.

[5] E. Aulisa, S. Manservisi, and R. Scardovelli, “A mixed markers and volume-of-fluid method
for the reconstruction and advection of interfaces in two-phase and free-boundary flows,”
Journal of Computational Physics, vol. 188, no. 2, pp. 611–639, 2003.

11

E. Aulisa, G. Barbi, A. Cervone, A. Chierici, F. Giangolini, S. Manservisi and L. Sirotti

[6] E. Aulisa, S. Manservisi, and R. Scardovelli, “A surface marker algorithm coupled to an
area-preserving marker redistribution method for three-dimensional interface tracking,”
Journal of Computational Physics, vol. 197, no. 2, pp. 555–584, 2004.

[7] R. Goldman, “Curvature formulas for implicit curves and surfaces,” Computer Aided Ge-
ometric Design, vol. 22, no. 7, pp. 632–658, 2005.

[8] E. Aulisa and J. Loftin, “Exact subdomain and embedded interface polynomial integration
in finite elements with planar cuts,” Numerical Algorithms, pp. 1–36, 2023.

[9] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.

[10] M. Lawiyuniarti, E. Rahmadiantri, I. Alamsyah, and G. Rachmaputri, “Application of least-
squares fitting of ellipse and hyperbola for two dimensional data,” in Journal of Physics:
Conference Series, vol. 948, p. 012069, IOP Publishing, 2018.

[11] E. Aulisa, S. Bna, and G. Bornia, Femus. https://github.com/eaulisa/MyFEMuS.git, 2014.

[12] A. Cervone, ProXPDE. https://github.com/capitalaslash/proxpde.git, 2015.

[13] R. J. Leveque, “High-resolution conservative algorithms for advection in incompressible
flow,” SIAM Journal on Numerical Analysis, vol. 33, no. 2, pp. 627–665, 1996.

12

	INTRODUCTION
	SURFACE MARKER ALGORITHM
	Marker geometry initialization
	Color function evaluation
	Runge-Kutta advection scheme
	Best-fit quadratic function
	Rebuilding marker position

	VELOCITY INTERPOLATION
	NUMERICAL RESULTS
	Interface advection test

	CONCLUSIONS

