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Abstract 
Aspects of a draft version of the Aeronautical Telecommunications Network 
(ATN) Standards and Recommended Practices (SARPs) under development by 

!SO-compliant committees of the International Civil Aviation Organization 

(ICAO) have been mathematically modelled using a formal description 

technique. The A TN SARPs are a specification for a global telecommunications 

network for air traffic control systems. A version of Harel's statecharts 
formalism embedded within a machine readable typed predicate logic has been 

used as a formal description technique to construct this mathematical model. Our 

model has been 'typechecked' to partially validate the internal consistency of the 
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specification. The work described in this paper has already uncovered some 
problems in the draft SARPs, and will provide a basis for follow-on efforts to 
apply formal analysis methods such as model-checking and symbolic execution 
to aspects of the A TN SARPs. The success of this approach suggests that typed 
predicate logic is useful as a syntactic and semantic foundation for specialized 
Formal Description Techniques (FDTs). 

Keywords 
Formal description techniques, practical experience, extensions of FDTs, state 
transition systems, typed predicate logic, OSI application layer, verification and 
validation. 

1 INTRODUCTION 

This paper describes the modelling of aspects of the Aeronautical 
Telecommunications Network (ATN) using the formalism known as 'statecharts' 
(Harel, 1987) and predicate logic. This effort was performed by workers at 
Hughes Aircraft of Canada Limited (HACL), the University of British Columbia 
(UBC) and the University of Victoria (UVic). It is part of the FormalWare 
project, jointly funded by the BC Advanced Systems Institute, HACL, and 
MacDonald Dettwiler. 

The A TN is a global system under development which will allow aircraft and 
ground stations to exchange data for the purpose of air traffic control. The 
various software components of the A TN reside in aircraft or ground station 
computers, and interact with human users and with each other to perform this 
data exchange. The communications protocols used by the software components 
are defined in ICAO documents referred to as Standards and Recommended 
Practices (SARPs) (SARP, 1996). 

This modelling effort consisted of writing textual descriptions of components 
of the A TN using a formal description technique. There were two goals for this 
effort: first, to help validate that the SARPs protocols are safe (do not lead to 
deadlocks or livelocks, for instance); and second, to provide a formal description 
of the SARPs which can potentially act as a basis for validating implementations 
of the A TN. The first phase of the effort consisted of writing and typechecking an 
extensive draft of the model, and doing some informal validation; some problems 
in the draft SARPs were identified as a result of this work. This paper reports on 
the first phase, which was done in November and December 1996. 

Among the more novel aspects of this work is the use of typed, predicate logic 
as a foundation for a more specialized formal description technique, namely a 
version of Harel's statecharts formalism. Although the 'semantic embedding' of 
specialized notations within typed, predicate logic is reasonably well-known by 
formal methods researchers, the effort reported in this paper provides some 
evidence of the practical benefits of this approach in addition to the more 



Using a formal description technique to model a global network 419 

theoretical benefits such as clarifying the semantics of specialized notations. By 
placing statecharts within a general-purpose environment, we were also able to 
integrate parts of the specification written in predicate logic itself. 

This paper is organized as follows. Section 2 gives background on the tools 
and methodologies used. Section 3 explains the overall strategy for the modelling 
effort. Section 4 describes the simplifying assumptions that were made in 
creating the model to 'abstract out' implementation details. Section 5 discusses 
the assumptions that had to be made in order to deal with problems identified in 
the draft SARPs. Section 6 presents the results of the effort. Section 7 discusses 
the effort planned for future phases of the project. Finally, in Section 8 we review 
some lessons learned from this effort with respect to the use of formal description 
techniques. 

2 TOOLS AND METHODOLOGIES USED 

This section describes the tools and methodologies used in the modelling 
effort. The statecharts formalism (Harel, 1987) was used to describe the system in 
terms of parallel state decomposition and state-transition diagrams. 'S' (Joyce, 
1994) is a formal description notation which we used to express statechart 
descriptions as well as other parts of the specification that are more suitably 
described in predicate logic. 'Fuss' is a typechecking tool for S specifications. 

There were a number of factors which contributed to our not using more 
commonly-known tools such as the Concurrency Workbench (Cleaveland, 1989) 
or those available for Estelle, LOTOS and SDL (Turner, 1993). First, the 
specification that we were working from is a combination of text in paragraphs 
and an informal state transition model given in tables, with explicitly-named 
states, making the statecharts notation particularly suitable. Second, we wanted to 
do model checking, rather than simply discrete event simulation, to demonstrate 
properties of our formal models. Third, many of the available tools for model 
checking work from the system as a single finite state machine. The nature of 
the A TN means that the system expressed as a flat finite state machine would 
have millions of states. We did not want to exclude the possibility that the 
structure of a hierarchical specification can be exploited to reduce the size of the 
state space in analysis. Finally, the conditions under which state changes take 
place in the A TN are relatively complex, and we needed a general logical notation 
to allow us to express them naturally and accurately. This is where it was 
advantageous to use predicate logic itself. 

Since we did not find this particular constellation of needs to be met by any 
one tool, we felt that it was most advantageous to us to use and extend a set of 
tools and methodologies with which members of the team had expertise. Analysis 
methods such as model checking are under development within this framework. 
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2.1 Statecharts 

Statecharts are described by their inventor, David Harel, as a 'visual formalism' 
(Harel, 1987). There is precedent in the air traffic control industry for using such 
formalisms; TCAS IT (Traffic Alert and Collision Avoidance System) was 
formally specified using the Requirements State Machine Language, a notation 
which is closely related to statecharts (Leveson, 1994). 

In the statecharts formalism, a system is described in terms of states and 
transitions between those states. In this sense, it is like the 'state transition 
diagram' formalism. However, a statechart state can be more than a state in a 
state transition diagram. 

A statechart state is either a 'basic state', an 'AND-state', or an 'OR-state'. 
Basic states correspond to the states of a state transition diagram. AND-states 
represent parallel composition and OR-states represent hierarchical state 
transition diagrams. 

Although there are advantages to graphical representations of statecharts, 
especially for presentation, we decided to produce the initial model in a textual 
form, for reasons including portability and ease of integration. 

Unfortunately, a number of semantically different versions of statecharts have 
emerged since the original informal description of the semantics of statecharts 
given by Harel. For this work, we have used a particular version of this formalism 
which has a formal semantics defined in a machine-readable format (Day, 1993). 
Whereas the behaviour of some statechart based tools are not clearly specified, 
these explicit semantics are used to directly initialize general-purpose analysis 
tools. 

2.2 S - a machine readable notation based on typed, predicate logic 

We used the formal description notation called S to represent statecharts textually. 
This made it possible to integrate the statechart parts of the model easily with 
predicate logic, as a means of specifying the details of complex state transitions, 
and with the text-based approach to requirements management followed at 
HACL. Through the use of parameterization, we were able to reduce the size of 
the specification and make it easily extensible without complicating the 
semantics of statecharts. 

S allows us to declare elements such as types, constants, functions and 
predicates that are left 'uninterpreted'. This contrasts with software (as well as 
some 'simulation-oriented' formal description techniques) where ultimately 
everything must be refined, either manually or by means of a compiler, into bits 
and executable machine code. 
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Like several other formal description notations, S is based on typed predicate 
logic. However, in contrast to such notations as Z (which requires the use of an 
intermediate mark-up notation or other means of handling the specialized symbols 
and graphical presentation format of Z), it uses a more readable syntax for non­
formal methods experts, which emphasizes letters and punctuation characters 
rather than symbolic characters. It also tends to use common English words (like 
'function' and 'select') as keywords, rather than the technical terms (like 
'lambda' and 'epsilon') used in other specification languages. Furthermore, the 
ASCII based syntax of S simplifies the mechanics of integrating formal 
descriptions into engineering documentation in contrast to notations which 
involve specialized symbols or graphical presentation formats. 

2.3 Fuss 

Fuss is a typechecking program for S, roughly corresponding to 'lint' for C. S 
is a strongly typed specification language, in the sense that the formal and actual 
parameters of a function call must be of exactly the same type, with no 
'typecasting' allowed. In addition, functions can take other functions as 
parameters, types can be declared in terms of other types, and functions can be 
declared as taking different patterns of types. This expressiveness makes a rich 
hierarchy of types available to the user. The Fuss tool checks that the user's 
specification is well-typed, and also implements a 'type inference' algorithm in 
the style of the programming language ML, which infers (wherever possible) a 
precise type for any object for which we have not given an explicit type. 

3 MODELLING STRATEGY 

The overall strategy used was to model each software entity within the ATN, 
and each module and 'status' state within an entity, as a statechart state. This 
section first describes the structure of the A TN as presented in the SARPs, and 
then discusses how the various aspects of that structure were modelled using 
statecharts and S. 

3.1 Structure of the A TN 

The A TN is specified in the SARPs as a set of components interacting via 
messages. The components are not required to be implemented as separate 
processes or even as separate objects at the code level, but their behaviour must be 
consistent with the message-passing model. 

Each component we modelled is further specified as a state transition system. 
Each transition between states is associated with a triggering event and a 
condition which must be true if the transition is to be followed when the event 
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Figure 1: Internal structure of Application Entity 

occurs. Each transition also has an associated action which is performed when 
the transition is followed. Typically, the trigger has to do with the message 
received and/or current variable settings, and the action is to send a message 
and/or change the variable settings. 

The top-level components of the ATN that human users interact with are 
referred to simply as the applications or user applications. These do not 
communicate directly with each other; rather, they use a number of Application 
Entities (AEs) found in the OSI application layer to provide them with 
communication services. The four types of AEs modelled in the present effort are 
the ADS (Automated Dependent Surveillance), CM (Context Manager), CPDLC 
(Controller Pilot Data Link Communication), and F/S (Flight Information 
Service). There are two versions of each type of AE, a ground version which 
resides in ground stations and an air version which resides in aircraft. The AEs 
communicate with each other via the supporting service. 

As shown in Figure 1, each AE in tum consists of three entities. The 
Application Service Element (ASE) performs the duty of receiving messages from 
the application and translating them into OSI-standard messages. The 
Association Control Service Element (ACSE) allows its AE to form associations 
with other ('peer') AEs. The Control Function (CF) mediates all communication 
amongst the ASE, the ACSE, the application and the supporting service. Each 
type of AE contains a unique type of ASE, but the CF and the ACSE are the same 
across all types of AEs. 

The SARPs consist of on the order of 1000 pages of text, containing detailed 
specifications of the four types of ASEs and the CF, along with requirements on 
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the lower OSI layers and various less formal guidelines documents. The ACSE is 
described in a separate 40-page document, ISO 8650 (ISO, 1994). 

3.2 Entities and Status States 

The entities modelled were the CF, the ACSE, the CM and ADS ASEs, and 
the supporting service. The CF and the ASEs are all specified in the SARPs in 
terms of tables which informally describe a state transition system, as is the ACSE 
in its specification. The supporting service can also be expressed as a simple state 
transition system. Each entity was therefore modelled as a statechart OR state, 
and the resulting models were put together as an AND-state. The decomposition 
of the task into one state per entity also allowed the work to be distributed to 
workers and integrated more smoothly. 

The CF, the ACSE, the CM ASE, and each module of the ground ADS ASE 
can be in one of several 'status' states (idle, associated, awaiting response, etc.) as 
defined in the SARPs. Each of these status states was modelled by a basic 
statechart state, and these basic states were put together in an OR-state to define 
the overall module or entity. 

Figure 2 illustrates this top-level state decomposition with an example system. 
Dashed boxes within the large box represent the substates of the overall AND­
state; the internal state transition structure of these substates has not been 
illustrated. The example consists of an air and ground CM AEs, the supporting 
service over which they communicate, and an 'environment' state Env which will 
be used to stand in for the applications using the AEs. 

Most of the components have parameterized names to eliminate duplicate 
specifications of the same behaviour. This is similar to the use of procedure calls 

Env ---------------,----------------
ICM_AE_1I lcM_AE_2I 

I I 
I I 
I I 

(CM_air 1) I (CM_ground 2) : I 
I I 
I I 
I I 

---------1(CF 1) ---------1(CF 2) 
I I 
I I 
I I 

(ACSE l) I (ACSE2) I 
I I 
I I 
I I 
I I 

---------------~---------------
(SuppSvc 1 2) 

Figure 2: Statechart structure of example system 
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in a programming language. Thus, (CF 1) is the name of the CF state belonging 
to the first AE, and (SuppSvc 1 2) is the name of a supporting service connecting 
the first and second AEs. The text just gives a specification for (CF i) and refers 
to (CF 1), (CF 2), etc. without requiring new text to be written. 

3.3 Transitions 

Each module or entity in the SARPs is in one particular status state at any 
given time. It makes transitions between one status state and another depending 
on messages it has received, which are modelled as events, and on the results of 
tests that it makes. Each of these transitions was modelled by a transition in the 
statechart of the module or entity. 

A large number of transitions is given in the SARPs for each entity, so most of 
the modelling effort went into formally defming these transitions. 

3.4 Shared declarations 
A file, called 'sc.s' and found in Figure 3, of shared declarations and 

definitions supports the modelling of statecharts in general. In sc.s, types. are 
defined for statecharts, state names, transitions, and transition names. State names 
are declared separately from the state specifications. Messages are modelled as 
events. sc.s also defines term constructors which can be used to build up a 
statechart definition from basic states and transitions. 

To support the task of modelling the SARPs, another S file named 
'atncommon.s' was developed to contain declarations for the state names of the 
top-level ATN entities, and also for the !SO-standardized message types (e.g., 'A­
ASSOCIATE request') used by all modules. 

These two S files are 'included' by the S files containing the statecharts 
models in much the same way that a '.h' file may be included by a software 
module written in C. They provided a common foundation for the half dozen 
individuals directly involved in the authoring of statechart models, allowing them 
to work with considerable independence during the initial phase of this project. 

4 SIMPLIFYING ASSUMPTIONS MADE 

One of the primary benefits of creating a formal model of a software/hardware 
system is that we can focus on high-level aspects of the system that we are 
interested in studying, and 'abstract out' implementation details. This process of 
abstraction consists largely of making simplifying assumptions about the system 
in order to clearly isolate the aspects we are modelling. 
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%% Type declarations 

%% Basic types 
stateName; 
event; 
simpleEvent; %% Used for "messages" 
action; 
transName; 

%% Transition type 
: trans == transName # stateName # event # action # stateName; 

%% Statechart type 
: sc := OrState :stateName :stateName : (sc)list :(trans)list 

I AndState :stateName :(sc)list 
I BasicState :stateName; 

%% Constructor declarations 

%% Expressions 
InState: stateName -> boo!; 

%% Events 
En: stateName -> event; %% Entering a state 
Ex: stateName -> event; %% Exiting a state 
Ev: simpleEvent; %% Atomic event name 
EvCond: event -> boo! -> event; %% Event and condition 
( And e ) : event -> event -> event; %% Both events 
(- Or e ): event -> event -> event; %% One or the other event 
Tm: event -> num -> event; %% Event at given time 
%% Receipt of message with data from stateName 
(:A) Receive: stateName -> simpleEvent -> A -> event; 

%% Actions 
No action: action; %% Null action 
Gen: simpleEvent -> action; %% Generate message 
(:A) ( Asn ): A-> A-> action; %%Assign var a value 
Both :-action-> action -> action; %% Do both actions 
%% Broadcast of message with data to all substates of stateName 
(:A) Send: stateName -> simpleEvent ->A-> action; 

Figure 3: 'sc.s' declarations for statecharts inS 

In our case, we were primarily interested in studying issues to do with the 
sequences of messages sent between the various ATN entities. We wanted to 
examine whether the message protocol as defined in the SARPs is safe (that it 
does not lead to deadlocks or livelocks, that it is complete and consistent, and so 
on). We also wanted to provide a formal definition of the high-level structure of 
the A TN and its protocols, which could be used as a basis for developing and 
testing the actual software. The simplifying assumptions we made reflect this 
focus: 

• We assumed that the supported service was stable and error-free. 

• We assumed that the translation of the data by the various entities did not 
affect the safety properties of interest to us, and therefore did not need to be 
modelled. 
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• Timers are often specified in the SARPs for such purposes as timing out 
dropped connections. We modelled timeouts of timers as messages sent from 
the environment, which could be sent at any time, rather than actually 
modelling time. For instance, a statement in the SARPs which specifies that a 
timeout will occur 30 seconds after a particular event will be modelled more 
generally as a timeout that could occur at any time. 

Note that the simplifying assumptions were made not because we felt unable to 
manage the extra details; rather, they were made because in our judgement the 
extra details were not relevant to the properties we are trying to validate. We may 
discover that we cannot validate some property because some necessary detail is 
missing. If this does happen, we will then add the missing detail to the model. 
However, as long as our simplifying assumptions hold, then any property 
derivable from the formal description should also be true for the SARPs. 

5 DISAMBIGUATING ASSUMPTIONS AND PROBLEMS WITH THE 
SARPS 

In contrast to simplifying assumptions as just discussed, we also found it 
necessary to make additional assumptions which we have called 'disambiguating 
assumptions'. From a logical point of view, these assumptions are less 'safe' 
than simplifying assumptions in that we are not merely shaving away irrelevant 
detail. With disambiguating assumptions, we are adding necessary detail to the 
model that may or may not have been intended by the authors of the SARPs. 

The effort reported here has revealed some ambiguities and lack of clarity 
concerning the handling of error conditions (for instance, when messages are 
received out of sequence) in the draft SARPs. The SARPs give somewhat 
ambiguous recommendations about what to do in a given error situation. For 
example, in the specification of the CF, the only substantial passage concerning 
the behaviour of the CF when a message is received out of sequence is the 
following: 'The error handling shall result in the association being aborted, if one 
exists, and a notification being given to the Application user.' This passage 
makes no mention of the fact that the CF must inform three different entities (the 
ASE, the ACSE, and the peer AE) of the abort of the connection, it does not 
describe the sequence or format for these messages, and it does not specify how 
notification of the abort is to be given to the Application user. 

Because the SARPs were ambiguous, the people writing the formal 
specifications were not able to come up with a model which corresponded 
unambiguously to the SARPs. Implementations would have the same difficulty. It 
is observed by experts in software safety that software intensive systems often 
perform well when operating under normal conditions, but not when operating 
under unusual or error conditions. There is the potential in the SARPs that 
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protocol errors which go undetected during validation will cause silent aborts of 
connections, error cascades, or similar problems. For instance, when the ACSE 
detects a malformed message, it is supposed to send an abort request both to its 
user and to its peer; but as soon as the CF passes on the first abort message, it 
goes into a state in which all subsequent abort messages from the ACSE are 
treated as protocol errors. Because of this, there is the possibility of a further 
error report from the CF, and the possibility that the peer will not know about the 
abort of the association. This in turn will at least cause other error conditions, 
and may have more serious consequences such as error cascades. 

Hence we have had to make some disambiguating assumptions about what the 
SARPs mean. Our group developed an interim strategy for dealing with error 
conditions to allow the development of the formal model to continue. Since the 
modelling effort was done, a new version of the SARPs was released around 
December, 1996. The particular problem noted in the last paragraph remains in 
the latest version; we have communicated our concerns to the ICAO committee 
responsible for the development of the SARPs. When these problems are resolved, 
it should be reasonably straightforward to modify our model based on the 
resolutions provided. 

6 RESULTS OF EFFORT 

Component #of #of #of Prior Worker Lines 
states trans vars worker hours ofS 

knowleds.e text 
CF 5 96 2 Very high 24 680 
ACSE 7 123 2 High 20 400 
CM 13 201 2 High 44 1790 
Ground ADS 22 232 1 Moderate 60 2850 
SuppSvc 1 10 0 High 5 50 
Mise SuEEOrt 32 150 
Total 48 662 7 185 5920 

Figure 4: Results of effort 

Figure 4 shows the results of the effort, in terms of the number of hours 
spent and number of lines of S text produced, according to the number of states, 
transitions and variables in the given component and the prior worker knowledge 
of the S formalism. The '#of states' in the column is the number of statechart 
states. It is not a measure of the complexity of the state space for analysis, but 
rather a rough measure of the inherent complexity of the specification. The 
number of hours also includes the time taken to perform static checks for 
completeness and consistency and integration. All workers were graduate 
students or faculty; 'very high' prior knowledge means knowledge of S in 
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% A normal transition for the ACSE (no conditions) . 
%Normally called as "inMessage. (ACSE TRANS ... )"in 
% order to emphasize message . -
ACSE_TRANS i sourceState outMessage 

) ; 

(destState: stateName - > stateName) 
inMessage := 

(PTrans ((ACSE i) . sourceState) inMessage), 
((ACSE i) . sourceState), 
(Receive (CF i) inMessage (ACSEData i)), 
(Send (CF i) outMessage (ACSEData i)), 
((ACSE i) . destState) 

Figure 5: A customizing declaration in S (from ACSE model) 

particular, 'high' means knowledge of typed logic but not S in particular, and 
'moderate' means only knowledge about first order logic. 

Figures 5 and 6 show some sample text from the resultant specification. 
Figure 5 shows a typical 'customizing' declaration in S; like a declaration of an 
auxiliary function in a programming language, this declaration allows the rest of 
the specification to be more compact. The function 'ACSE_TRANS' maps five 
parameters, 'i' , 'sourceState' , 'outMessage' , 'destState' and 'inMessage' to an 
instance of a transition denoted by a 5-tuple of the form (transition label, source 
state, event/condition, action, destination state). Figure 6 shows a typical section 
of the specification of the ACSE which lists the transitions from a particular state. 
In the definition of 'Transitions_From_Awaiting_AARE', 'ACSE_TRANS' is 
used within a let-definition to introduce a local name for a function called 
'TRANS_CELL'. In the let-definition of 'TRANS_CELL', the function 

Transitions From Awaiting AARE i := 
/ * From-Awaiting AARE- state (STAl) * / 
let Error Cell : ~ (ACSE error i Awaiting AARE) in 
let TRANS=CELL : = (ACSE=TRANS i Awaiting=AARE) in 

/ * Making connection * / 
A ASSOCIATE req Error Cell; 
A=ASSOCIATE=rsp_pos Error=Cell ; 
A ASSOCIATE rsp neg . Error Cell ; 
P-CONNECT ind - . Error-Cell; 
P=CONNECT=cnf_pos -

(TRANS_CELL A_ASSOCIATE_cnf_pos Associated); 
P CONNECT cnf neg 

- (TRANS CELL A ASSOCIATE cnf neg Idle); 
/ * Releas ing connection normally */ 
A RELEASE req Error Cell; 
A=RELEASE=rsp_pos Error=Cell; 
A RELEASE rsp neg Error Cell; 
P-RELEASE-ind- Error-Cell; 
P=RELEASE=cnf_pos Error=Cell; 
P_RELEASE_cnf_neg . Error_Cell; 
/* Releasing connection abnormally * / 
A ABORT req (TRANS CELL P U ABORT req 
P-U ABORT ind (TRANS-CELL A-ABORT ind 
P-P-ABORT-ind . (TRANS-CELL A-P ABORT ind 

]; -- - - -- -

Figure 6: Typical section of ACSE model 

Idle); 
Idle); 
Idle) 
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'ACSE_TRANS' is partially evaluated when it is applied to two values, 'i' and 
'Awaiting_AARE', as arguments for the first two of the five parameters of 
'ACSE_TRANS'. This yields a local function, 'TRANS_CELL' which is used to 
denote transitions that always originate from the state 'Awaiting_AARE'. 
'TRANS_CELL' is parameterized by the remaining three parameters of 
'ACSE_TRANS', namely, 'outMessage', 'destState' and 'inMessage'. This use of 
functions results in a more concise, and potentially easier to understand 
description. Our use of the S notation provides much the same expressiveness as a 
general-purpose functional programming language. 

Models have been completed for the CF, the ACSE, the air and ground CM 
ASEs, the supporting service, and part of the ground ADS ASE, incorporating 
five out of the seven ADS modules defined in the SARPs. The amount of effort 
required to integrate any new ASEs into the model should be minimal. 

We have successfully integrated the CM ASE models with the CF, ACSE, and 
supporting service, to the level of typechecking. The resulting statechart 
specification models an air CM AE (consisting of an air CM ASE, a CF, and an 
ACSE) talking to a ground CM AE (consisting of a ground CM ASE, a CF, and 
an ACSE) via the supporting service (see Figure 2). When later ASE models are 
developed, they should be able to be easily added to the specification and re-use 
much of the existing specification through parameterization. 

The integrated system has passed the typechecking of the Fuss tool. This 
indicates that most interface errors have been eliminated, although it does not 
allow us to conclude that the models are completely correct. 

Some static checks have been performed for the ACSE and CF. These are of 
two types: completeness checks and consistency checks. The completeness checks 
are intended to ensure that for each message received by a component of the 
model, there is at least one transition that will be followed regardless of global 
variable settings. The consistency checks are intended to ensure that not more 
than one transition can be followed for each combination of messages received 
and global variable settings. These checks were carried out by visual inspection. 
It would be useful to have a tool to do this analysis. Previous efforts at checking 
the completeness and consistency of state-based models (Heimdahl, 1996; 
Heitmeyer, 1996) rely on a tabular specification of the transition triggers. 

7 FUTURE EFFORT 

Two additional phases of the project are planned for the future. Phase 2 
consists primarily of effort to adapt/develop a model checking tool as necessary to 
demonstrate properties of the statechart model. Phase 3 consists of effort by the 
team as a whole to do the more extensive validation. We also expect our model to 
be maintained in order to track changes in the SARPs. 
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At the present time, the only tool available to support the modelling effort is 
the Fuss typechecker. The second author's PhD thesis research examines how to 
analyze specifications consisting of integrated components in different notations 
(such as statecharts and predicate logic), and how to automatically analyze 
specifications at a high level of abstraction. The SARPs statechart model serves as 
test data for this effort; the other workers will interact with her to clear up any 
problems that may arise from the models. 

As part of a research collaboration involving two universities and two 
industrial organizations, the work described in this paper is being used as the 
basis for a variety of research oriented investigations. Members of the 
FormalWare project are using, or are expected to use, this example as a case study 
for the development of methods and software tools for purposes such as automatic 
test case generation, symbolic execution and possibly code generation. In many 
cases, the parsing and typechecking functionality of Fuss is used as a front-end for 
the implementation of software tools which use S as input. This is easily 
achieved since Fuss is designed specifically to support user developed extensions 
which access the internal representation of an S specification created by Fuss. 

8 LESSONS LEARNED 

The work described in this paper represents the results of using an integrated 
approach to specifying a model. Using a general-purpose formal description 
notation (S) as the basis of the entire project, we built models of the components 
of the A TN based on the statecharts formalism, and laid the groundwork for 
building analysis tools using S as input. We conclude that this integrated 
approach has indeed been useful. 

8.1 Usefulness of a general-purpose formal description notation 

Using a general-purpose formal description notation has been valuable. The 
alternative would be to use a specialized notation for state-based applications, 
such as pure statecharts. Our approach allowed us to integrate a state-based 
formalism with predicate logic to express the complex conditions on transitions. 
We were also able to use uninterpreted constants to maintain a level of 
abstraction, and parameterization to reduce duplication. 

A future goal of the project is to extend the range of current analysis methods 
to integrated requirements specifications given in multiple notations and at a high 
level of abstraction, such as those containing uninterpreted constants. In this 
paper we have demonstrated that a general-purpose notation can serve as a 
foundation for expressing specialized notations and integrating notations. Future 
analysis work will take advantage of the fact the semantics of the specialized 
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notation can also be expressed in the same framework (Day, 1993). This means 
that we are not locked into a specialized notation for specification and analysis. 

8.2 Usefulness of S in particular 

S has been particularly appropriate as a general-purpose formal description 
notation because (a) it is strongly typed and has an associated typechecker, Fuss; 
(b) it is machine readable; (c) it is more human-readable than many more 
symbolic notations; and (d) its power and generality allow a good deal of 
flexibility in how the model components are expressed. 

Another important benefit of using typed, predicate logic was the ability to 
build a layer of infrastructure (i.e., the S file 'atncommon.s' mentioned earlier) on 
top of the specialized FDT which tailors our use of statecharts specifically to the 
purpose of modelling aspects of the SARPs. 

Finally, our choice of S as the foundation for our approach made it possible to 
use Fuss 'off the shelf ' for this integration task. 

8.3 Classification of assumptions 

This work also led to a better appreciation of the distinction between the role of 
'simplifying assumptions' and other kinds of assumptions made in the 
development of a formal representation, such as the 'disambiguating assumptions' 
made to address aspects of the SARPs which were found to be ambiguous or 
unclear. There is a natural tendency to regard any kind of modelling 
simplification as something that may undermine the validity of results derived 
from the model. But we have used the term 'simplifying assumptions' to describe 
aspects of our formal representation which, in effect, increase the generality of 
these results rather than undermining their validity. 
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