
26
Using a Formal Description Technique
to Model Aspects of a Global Air
Traffic Telecommunications Network

J. H. Andrews
N.A.Day
Dept. of Computer Science, University of British Columbia
Vancouver, BC, Canada V6T 1ZA
tel (604)822-3061 fax (604)822-5485
(jandrews, day}@cs.ubc.ca

J.J.Joyce
Hughes Aircraft of Canada Limited
#200 - 13575 Commerce Parkway
Richmond, BC, Canada V6V 2L1
tel (604)279-5721 fax (604)279-5982
jjoyce@ccgate .hac .com

Abstract
Aspects of a draft version of the Aeronautical Telecommunications Network
(ATN) Standards and Recommended Practices (SARPs) under development by

!SO-compliant committees of the International Civil Aviation Organization

(ICAO) have been mathematically modelled using a formal description

technique. The A TN SARPs are a specification for a global telecommunications

network for air traffic control systems. A version of Harel's statecharts
formalism embedded within a machine readable typed predicate logic has been

used as a formal description technique to construct this mathematical model. Our

model has been 'typechecked' to partially validate the internal consistency of the

Formal Description Techniques and Protocol Specification, Testing and Verification

T. Mizuno, N. Shiratori, T. Higashi no & A. Togashi (Eds.) © 1997 IFIP. Published by Chapman & Hall

418 Part Eight Industrial Usage Reports

specification. The work described in this paper has already uncovered some
problems in the draft SARPs, and will provide a basis for follow-on efforts to
apply formal analysis methods such as model-checking and symbolic execution
to aspects of the A TN SARPs. The success of this approach suggests that typed
predicate logic is useful as a syntactic and semantic foundation for specialized
Formal Description Techniques (FDTs).

Keywords
Formal description techniques, practical experience, extensions of FDTs, state
transition systems, typed predicate logic, OSI application layer, verification and
validation.

1 INTRODUCTION

This paper describes the modelling of aspects of the Aeronautical
Telecommunications Network (ATN) using the formalism known as 'statecharts'
(Harel, 1987) and predicate logic. This effort was performed by workers at
Hughes Aircraft of Canada Limited (HACL), the University of British Columbia
(UBC) and the University of Victoria (UVic). It is part of the FormalWare
project, jointly funded by the BC Advanced Systems Institute, HACL, and
MacDonald Dettwiler.

The A TN is a global system under development which will allow aircraft and
ground stations to exchange data for the purpose of air traffic control. The
various software components of the A TN reside in aircraft or ground station
computers, and interact with human users and with each other to perform this
data exchange. The communications protocols used by the software components
are defined in ICAO documents referred to as Standards and Recommended
Practices (SARPs) (SARP, 1996).

This modelling effort consisted of writing textual descriptions of components
of the A TN using a formal description technique. There were two goals for this
effort: first, to help validate that the SARPs protocols are safe (do not lead to
deadlocks or livelocks, for instance); and second, to provide a formal description
of the SARPs which can potentially act as a basis for validating implementations
of the A TN. The first phase of the effort consisted of writing and typechecking an
extensive draft of the model, and doing some informal validation; some problems
in the draft SARPs were identified as a result of this work. This paper reports on
the first phase, which was done in November and December 1996.

Among the more novel aspects of this work is the use of typed, predicate logic
as a foundation for a more specialized formal description technique, namely a
version of Harel's statecharts formalism. Although the 'semantic embedding' of
specialized notations within typed, predicate logic is reasonably well-known by
formal methods researchers, the effort reported in this paper provides some
evidence of the practical benefits of this approach in addition to the more

Using a formal description technique to model a global network 419

theoretical benefits such as clarifying the semantics of specialized notations. By
placing statecharts within a general-purpose environment, we were also able to
integrate parts of the specification written in predicate logic itself.

This paper is organized as follows. Section 2 gives background on the tools
and methodologies used. Section 3 explains the overall strategy for the modelling
effort. Section 4 describes the simplifying assumptions that were made in
creating the model to 'abstract out' implementation details. Section 5 discusses
the assumptions that had to be made in order to deal with problems identified in
the draft SARPs. Section 6 presents the results of the effort. Section 7 discusses
the effort planned for future phases of the project. Finally, in Section 8 we review
some lessons learned from this effort with respect to the use of formal description
techniques.

2 TOOLS AND METHODOLOGIES USED

This section describes the tools and methodologies used in the modelling
effort. The statecharts formalism (Harel, 1987) was used to describe the system in
terms of parallel state decomposition and state-transition diagrams. 'S' (Joyce,
1994) is a formal description notation which we used to express statechart
descriptions as well as other parts of the specification that are more suitably
described in predicate logic. 'Fuss' is a typechecking tool for S specifications.

There were a number of factors which contributed to our not using more
commonly-known tools such as the Concurrency Workbench (Cleaveland, 1989)
or those available for Estelle, LOTOS and SDL (Turner, 1993). First, the
specification that we were working from is a combination of text in paragraphs
and an informal state transition model given in tables, with explicitly-named
states, making the statecharts notation particularly suitable. Second, we wanted to
do model checking, rather than simply discrete event simulation, to demonstrate
properties of our formal models. Third, many of the available tools for model
checking work from the system as a single finite state machine. The nature of
the A TN means that the system expressed as a flat finite state machine would
have millions of states. We did not want to exclude the possibility that the
structure of a hierarchical specification can be exploited to reduce the size of the
state space in analysis. Finally, the conditions under which state changes take
place in the A TN are relatively complex, and we needed a general logical notation
to allow us to express them naturally and accurately. This is where it was
advantageous to use predicate logic itself.

Since we did not find this particular constellation of needs to be met by any
one tool, we felt that it was most advantageous to us to use and extend a set of
tools and methodologies with which members of the team had expertise. Analysis
methods such as model checking are under development within this framework.

420 Part Eight Industrial Usage Reports

2.1 Statecharts

Statecharts are described by their inventor, David Harel, as a 'visual formalism'
(Harel, 1987). There is precedent in the air traffic control industry for using such
formalisms; TCAS IT (Traffic Alert and Collision Avoidance System) was
formally specified using the Requirements State Machine Language, a notation
which is closely related to statecharts (Leveson, 1994).

In the statecharts formalism, a system is described in terms of states and
transitions between those states. In this sense, it is like the 'state transition
diagram' formalism. However, a statechart state can be more than a state in a
state transition diagram.

A statechart state is either a 'basic state', an 'AND-state', or an 'OR-state'.
Basic states correspond to the states of a state transition diagram. AND-states
represent parallel composition and OR-states represent hierarchical state
transition diagrams.

Although there are advantages to graphical representations of statecharts,
especially for presentation, we decided to produce the initial model in a textual
form, for reasons including portability and ease of integration.

Unfortunately, a number of semantically different versions of statecharts have
emerged since the original informal description of the semantics of statecharts
given by Harel. For this work, we have used a particular version of this formalism
which has a formal semantics defined in a machine-readable format (Day, 1993).
Whereas the behaviour of some statechart based tools are not clearly specified,
these explicit semantics are used to directly initialize general-purpose analysis
tools.

2.2 S - a machine readable notation based on typed, predicate logic

We used the formal description notation called S to represent statecharts textually.
This made it possible to integrate the statechart parts of the model easily with
predicate logic, as a means of specifying the details of complex state transitions,
and with the text-based approach to requirements management followed at
HACL. Through the use of parameterization, we were able to reduce the size of
the specification and make it easily extensible without complicating the
semantics of statecharts.

S allows us to declare elements such as types, constants, functions and
predicates that are left 'uninterpreted'. This contrasts with software (as well as
some 'simulation-oriented' formal description techniques) where ultimately
everything must be refined, either manually or by means of a compiler, into bits
and executable machine code.

Using a formal description technique to model a global network 421

Like several other formal description notations, S is based on typed predicate
logic. However, in contrast to such notations as Z (which requires the use of an
intermediate mark-up notation or other means of handling the specialized symbols
and graphical presentation format of Z), it uses a more readable syntax for non­
formal methods experts, which emphasizes letters and punctuation characters
rather than symbolic characters. It also tends to use common English words (like
'function' and 'select') as keywords, rather than the technical terms (like
'lambda' and 'epsilon') used in other specification languages. Furthermore, the
ASCII based syntax of S simplifies the mechanics of integrating formal
descriptions into engineering documentation in contrast to notations which
involve specialized symbols or graphical presentation formats.

2.3 Fuss

Fuss is a typechecking program for S, roughly corresponding to 'lint' for C. S
is a strongly typed specification language, in the sense that the formal and actual
parameters of a function call must be of exactly the same type, with no
'typecasting' allowed. In addition, functions can take other functions as
parameters, types can be declared in terms of other types, and functions can be
declared as taking different patterns of types. This expressiveness makes a rich
hierarchy of types available to the user. The Fuss tool checks that the user's
specification is well-typed, and also implements a 'type inference' algorithm in
the style of the programming language ML, which infers (wherever possible) a
precise type for any object for which we have not given an explicit type.

3 MODELLING STRATEGY

The overall strategy used was to model each software entity within the ATN,
and each module and 'status' state within an entity, as a statechart state. This
section first describes the structure of the A TN as presented in the SARPs, and
then discusses how the various aspects of that structure were modelled using
statecharts and S.

3.1 Structure of the A TN

The A TN is specified in the SARPs as a set of components interacting via
messages. The components are not required to be implemented as separate
processes or even as separate objects at the code level, but their behaviour must be
consistent with the message-passing model.

Each component we modelled is further specified as a state transition system.
Each transition between states is associated with a triggering event and a
condition which must be true if the transition is to be followed when the event

422 Part Eight Industrial Usage Reports

Application

Application Entity (AE)

L
I Application

Control

Service Element (ASE) Function

"'
(CF)

l " I , Association Control
Service Element (ACSE)

I
/

./
Supportmg Serv1ce

Figure 1: Internal structure of Application Entity

occurs. Each transition also has an associated action which is performed when
the transition is followed. Typically, the trigger has to do with the message
received and/or current variable settings, and the action is to send a message
and/or change the variable settings.

The top-level components of the ATN that human users interact with are
referred to simply as the applications or user applications. These do not
communicate directly with each other; rather, they use a number of Application
Entities (AEs) found in the OSI application layer to provide them with
communication services. The four types of AEs modelled in the present effort are
the ADS (Automated Dependent Surveillance), CM (Context Manager), CPDLC
(Controller Pilot Data Link Communication), and F/S (Flight Information
Service). There are two versions of each type of AE, a ground version which
resides in ground stations and an air version which resides in aircraft. The AEs
communicate with each other via the supporting service.

As shown in Figure 1, each AE in tum consists of three entities. The
Application Service Element (ASE) performs the duty of receiving messages from
the application and translating them into OSI-standard messages. The
Association Control Service Element (ACSE) allows its AE to form associations
with other ('peer') AEs. The Control Function (CF) mediates all communication
amongst the ASE, the ACSE, the application and the supporting service. Each
type of AE contains a unique type of ASE, but the CF and the ACSE are the same
across all types of AEs.

The SARPs consist of on the order of 1000 pages of text, containing detailed
specifications of the four types of ASEs and the CF, along with requirements on

Using a formal description technique to model a global network 423

the lower OSI layers and various less formal guidelines documents. The ACSE is
described in a separate 40-page document, ISO 8650 (ISO, 1994).

3.2 Entities and Status States

The entities modelled were the CF, the ACSE, the CM and ADS ASEs, and
the supporting service. The CF and the ASEs are all specified in the SARPs in
terms of tables which informally describe a state transition system, as is the ACSE
in its specification. The supporting service can also be expressed as a simple state
transition system. Each entity was therefore modelled as a statechart OR state,
and the resulting models were put together as an AND-state. The decomposition
of the task into one state per entity also allowed the work to be distributed to
workers and integrated more smoothly.

The CF, the ACSE, the CM ASE, and each module of the ground ADS ASE
can be in one of several 'status' states (idle, associated, awaiting response, etc.) as
defined in the SARPs. Each of these status states was modelled by a basic
statechart state, and these basic states were put together in an OR-state to define
the overall module or entity.

Figure 2 illustrates this top-level state decomposition with an example system.
Dashed boxes within the large box represent the substates of the overall AND­
state; the internal state transition structure of these substates has not been
illustrated. The example consists of an air and ground CM AEs, the supporting
service over which they communicate, and an 'environment' state Env which will
be used to stand in for the applications using the AEs.

Most of the components have parameterized names to eliminate duplicate
specifications of the same behaviour. This is similar to the use of procedure calls

Env ---------------,----------------
ICM_AE_1I lcM_AE_2I

I I
I I
I I

(CM_air 1) I (CM_ground 2) : I
I I
I I
I I

---------1(CF 1) ---------1(CF 2)
I I
I I
I I

(ACSE l) I (ACSE2) I
I I
I I
I I
I I

---------------~---------------
(SuppSvc 1 2)

Figure 2: Statechart structure of example system

424 Part Eight Industrial Usage Reports

in a programming language. Thus, (CF 1) is the name of the CF state belonging
to the first AE, and (SuppSvc 1 2) is the name of a supporting service connecting
the first and second AEs. The text just gives a specification for (CF i) and refers
to (CF 1), (CF 2), etc. without requiring new text to be written.

3.3 Transitions

Each module or entity in the SARPs is in one particular status state at any
given time. It makes transitions between one status state and another depending
on messages it has received, which are modelled as events, and on the results of
tests that it makes. Each of these transitions was modelled by a transition in the
statechart of the module or entity.

A large number of transitions is given in the SARPs for each entity, so most of
the modelling effort went into formally defming these transitions.

3.4 Shared declarations
A file, called 'sc.s' and found in Figure 3, of shared declarations and

definitions supports the modelling of statecharts in general. In sc.s, types. are
defined for statecharts, state names, transitions, and transition names. State names
are declared separately from the state specifications. Messages are modelled as
events. sc.s also defines term constructors which can be used to build up a
statechart definition from basic states and transitions.

To support the task of modelling the SARPs, another S file named
'atncommon.s' was developed to contain declarations for the state names of the
top-level ATN entities, and also for the !SO-standardized message types (e.g., 'A­
ASSOCIATE request') used by all modules.

These two S files are 'included' by the S files containing the statecharts
models in much the same way that a '.h' file may be included by a software
module written in C. They provided a common foundation for the half dozen
individuals directly involved in the authoring of statechart models, allowing them
to work with considerable independence during the initial phase of this project.

4 SIMPLIFYING ASSUMPTIONS MADE

One of the primary benefits of creating a formal model of a software/hardware
system is that we can focus on high-level aspects of the system that we are
interested in studying, and 'abstract out' implementation details. This process of
abstraction consists largely of making simplifying assumptions about the system
in order to clearly isolate the aspects we are modelling.

Using a formal description technique to model a global network 425

%% Type declarations

%% Basic types
stateName;
event;
simpleEvent; %% Used for "messages"
action;
transName;

%% Transition type
: trans == transName # stateName # event # action # stateName;

%% Statechart type
: sc := OrState :stateName :stateName : (sc)list :(trans)list

I AndState :stateName :(sc)list
I BasicState :stateName;

%% Constructor declarations

%% Expressions
InState: stateName -> boo!;

%% Events
En: stateName -> event; %% Entering a state
Ex: stateName -> event; %% Exiting a state
Ev: simpleEvent; %% Atomic event name
EvCond: event -> boo! -> event; %% Event and condition
(And e) : event -> event -> event; %% Both events
(- Or e): event -> event -> event; %% One or the other event
Tm: event -> num -> event; %% Event at given time
%% Receipt of message with data from stateName
(:A) Receive: stateName -> simpleEvent -> A -> event;

%% Actions
No action: action; %% Null action
Gen: simpleEvent -> action; %% Generate message
(:A) (Asn): A-> A-> action; %%Assign var a value
Both :-action-> action -> action; %% Do both actions
%% Broadcast of message with data to all substates of stateName
(:A) Send: stateName -> simpleEvent ->A-> action;

Figure 3: 'sc.s' declarations for statecharts inS

In our case, we were primarily interested in studying issues to do with the
sequences of messages sent between the various ATN entities. We wanted to
examine whether the message protocol as defined in the SARPs is safe (that it
does not lead to deadlocks or livelocks, that it is complete and consistent, and so
on). We also wanted to provide a formal definition of the high-level structure of
the A TN and its protocols, which could be used as a basis for developing and
testing the actual software. The simplifying assumptions we made reflect this
focus:

• We assumed that the supported service was stable and error-free.

• We assumed that the translation of the data by the various entities did not
affect the safety properties of interest to us, and therefore did not need to be
modelled.

426 Part Eight Industrial Usage Reports

• Timers are often specified in the SARPs for such purposes as timing out
dropped connections. We modelled timeouts of timers as messages sent from
the environment, which could be sent at any time, rather than actually
modelling time. For instance, a statement in the SARPs which specifies that a
timeout will occur 30 seconds after a particular event will be modelled more
generally as a timeout that could occur at any time.

Note that the simplifying assumptions were made not because we felt unable to
manage the extra details; rather, they were made because in our judgement the
extra details were not relevant to the properties we are trying to validate. We may
discover that we cannot validate some property because some necessary detail is
missing. If this does happen, we will then add the missing detail to the model.
However, as long as our simplifying assumptions hold, then any property
derivable from the formal description should also be true for the SARPs.

5 DISAMBIGUATING ASSUMPTIONS AND PROBLEMS WITH THE
SARPS

In contrast to simplifying assumptions as just discussed, we also found it
necessary to make additional assumptions which we have called 'disambiguating
assumptions'. From a logical point of view, these assumptions are less 'safe'
than simplifying assumptions in that we are not merely shaving away irrelevant
detail. With disambiguating assumptions, we are adding necessary detail to the
model that may or may not have been intended by the authors of the SARPs.

The effort reported here has revealed some ambiguities and lack of clarity
concerning the handling of error conditions (for instance, when messages are
received out of sequence) in the draft SARPs. The SARPs give somewhat
ambiguous recommendations about what to do in a given error situation. For
example, in the specification of the CF, the only substantial passage concerning
the behaviour of the CF when a message is received out of sequence is the
following: 'The error handling shall result in the association being aborted, if one
exists, and a notification being given to the Application user.' This passage
makes no mention of the fact that the CF must inform three different entities (the
ASE, the ACSE, and the peer AE) of the abort of the connection, it does not
describe the sequence or format for these messages, and it does not specify how
notification of the abort is to be given to the Application user.

Because the SARPs were ambiguous, the people writing the formal
specifications were not able to come up with a model which corresponded
unambiguously to the SARPs. Implementations would have the same difficulty. It
is observed by experts in software safety that software intensive systems often
perform well when operating under normal conditions, but not when operating
under unusual or error conditions. There is the potential in the SARPs that

Using a formal description technique to model a global network 427

protocol errors which go undetected during validation will cause silent aborts of
connections, error cascades, or similar problems. For instance, when the ACSE
detects a malformed message, it is supposed to send an abort request both to its
user and to its peer; but as soon as the CF passes on the first abort message, it
goes into a state in which all subsequent abort messages from the ACSE are
treated as protocol errors. Because of this, there is the possibility of a further
error report from the CF, and the possibility that the peer will not know about the
abort of the association. This in turn will at least cause other error conditions,
and may have more serious consequences such as error cascades.

Hence we have had to make some disambiguating assumptions about what the
SARPs mean. Our group developed an interim strategy for dealing with error
conditions to allow the development of the formal model to continue. Since the
modelling effort was done, a new version of the SARPs was released around
December, 1996. The particular problem noted in the last paragraph remains in
the latest version; we have communicated our concerns to the ICAO committee
responsible for the development of the SARPs. When these problems are resolved,
it should be reasonably straightforward to modify our model based on the
resolutions provided.

6 RESULTS OF EFFORT

Component #of #of #of Prior Worker Lines
states trans vars worker hours ofS

knowleds.e text
CF 5 96 2 Very high 24 680
ACSE 7 123 2 High 20 400
CM 13 201 2 High 44 1790
Ground ADS 22 232 1 Moderate 60 2850
SuppSvc 1 10 0 High 5 50
Mise SuEEOrt 32 150
Total 48 662 7 185 5920

Figure 4: Results of effort

Figure 4 shows the results of the effort, in terms of the number of hours
spent and number of lines of S text produced, according to the number of states,
transitions and variables in the given component and the prior worker knowledge
of the S formalism. The '#of states' in the column is the number of statechart
states. It is not a measure of the complexity of the state space for analysis, but
rather a rough measure of the inherent complexity of the specification. The
number of hours also includes the time taken to perform static checks for
completeness and consistency and integration. All workers were graduate
students or faculty; 'very high' prior knowledge means knowledge of S in

428 Part Eight Industrial Usage Reports

% A normal transition for the ACSE (no conditions) .
%Normally called as "inMessage. (ACSE TRANS ...)"in
% order to emphasize message . -
ACSE_TRANS i sourceState outMessage

) ;

(destState: stateName - > stateName)
inMessage :=

(PTrans ((ACSE i) . sourceState) inMessage),
((ACSE i) . sourceState),
(Receive (CF i) inMessage (ACSEData i)),
(Send (CF i) outMessage (ACSEData i)),
((ACSE i) . destState)

Figure 5: A customizing declaration in S (from ACSE model)

particular, 'high' means knowledge of typed logic but not S in particular, and
'moderate' means only knowledge about first order logic.

Figures 5 and 6 show some sample text from the resultant specification.
Figure 5 shows a typical 'customizing' declaration in S; like a declaration of an
auxiliary function in a programming language, this declaration allows the rest of
the specification to be more compact. The function 'ACSE_TRANS' maps five
parameters, 'i' , 'sourceState' , 'outMessage' , 'destState' and 'inMessage' to an
instance of a transition denoted by a 5-tuple of the form (transition label, source
state, event/condition, action, destination state). Figure 6 shows a typical section
of the specification of the ACSE which lists the transitions from a particular state.
In the definition of 'Transitions_From_Awaiting_AARE', 'ACSE_TRANS' is
used within a let-definition to introduce a local name for a function called
'TRANS_CELL'. In the let-definition of 'TRANS_CELL', the function

Transitions From Awaiting AARE i :=
/ * From-Awaiting AARE- state (STAl) * /
let Error Cell : ~ (ACSE error i Awaiting AARE) in
let TRANS=CELL : = (ACSE=TRANS i Awaiting=AARE) in

/ * Making connection * /
A ASSOCIATE req Error Cell;
A=ASSOCIATE=rsp_pos Error=Cell ;
A ASSOCIATE rsp neg . Error Cell ;
P-CONNECT ind - . Error-Cell;
P=CONNECT=cnf_pos -

(TRANS_CELL A_ASSOCIATE_cnf_pos Associated);
P CONNECT cnf neg

- (TRANS CELL A ASSOCIATE cnf neg Idle);
/ * Releas ing connection normally */
A RELEASE req Error Cell;
A=RELEASE=rsp_pos Error=Cell;
A RELEASE rsp neg Error Cell;
P-RELEASE-ind- Error-Cell;
P=RELEASE=cnf_pos Error=Cell;
P_RELEASE_cnf_neg . Error_Cell;
/* Releasing connection abnormally * /
A ABORT req (TRANS CELL P U ABORT req
P-U ABORT ind (TRANS-CELL A-ABORT ind
P-P-ABORT-ind . (TRANS-CELL A-P ABORT ind

]; -- - - -- -

Figure 6: Typical section of ACSE model

Idle);
Idle);
Idle)

Using a formal description technique to model a global network 429

'ACSE_TRANS' is partially evaluated when it is applied to two values, 'i' and
'Awaiting_AARE', as arguments for the first two of the five parameters of
'ACSE_TRANS'. This yields a local function, 'TRANS_CELL' which is used to
denote transitions that always originate from the state 'Awaiting_AARE'.
'TRANS_CELL' is parameterized by the remaining three parameters of
'ACSE_TRANS', namely, 'outMessage', 'destState' and 'inMessage'. This use of
functions results in a more concise, and potentially easier to understand
description. Our use of the S notation provides much the same expressiveness as a
general-purpose functional programming language.

Models have been completed for the CF, the ACSE, the air and ground CM
ASEs, the supporting service, and part of the ground ADS ASE, incorporating
five out of the seven ADS modules defined in the SARPs. The amount of effort
required to integrate any new ASEs into the model should be minimal.

We have successfully integrated the CM ASE models with the CF, ACSE, and
supporting service, to the level of typechecking. The resulting statechart
specification models an air CM AE (consisting of an air CM ASE, a CF, and an
ACSE) talking to a ground CM AE (consisting of a ground CM ASE, a CF, and
an ACSE) via the supporting service (see Figure 2). When later ASE models are
developed, they should be able to be easily added to the specification and re-use
much of the existing specification through parameterization.

The integrated system has passed the typechecking of the Fuss tool. This
indicates that most interface errors have been eliminated, although it does not
allow us to conclude that the models are completely correct.

Some static checks have been performed for the ACSE and CF. These are of
two types: completeness checks and consistency checks. The completeness checks
are intended to ensure that for each message received by a component of the
model, there is at least one transition that will be followed regardless of global
variable settings. The consistency checks are intended to ensure that not more
than one transition can be followed for each combination of messages received
and global variable settings. These checks were carried out by visual inspection.
It would be useful to have a tool to do this analysis. Previous efforts at checking
the completeness and consistency of state-based models (Heimdahl, 1996;
Heitmeyer, 1996) rely on a tabular specification of the transition triggers.

7 FUTURE EFFORT

Two additional phases of the project are planned for the future. Phase 2
consists primarily of effort to adapt/develop a model checking tool as necessary to
demonstrate properties of the statechart model. Phase 3 consists of effort by the
team as a whole to do the more extensive validation. We also expect our model to
be maintained in order to track changes in the SARPs.

430 Part Eight Industrial Usage Reports

At the present time, the only tool available to support the modelling effort is
the Fuss typechecker. The second author's PhD thesis research examines how to
analyze specifications consisting of integrated components in different notations
(such as statecharts and predicate logic), and how to automatically analyze
specifications at a high level of abstraction. The SARPs statechart model serves as
test data for this effort; the other workers will interact with her to clear up any
problems that may arise from the models.

As part of a research collaboration involving two universities and two
industrial organizations, the work described in this paper is being used as the
basis for a variety of research oriented investigations. Members of the
FormalWare project are using, or are expected to use, this example as a case study
for the development of methods and software tools for purposes such as automatic
test case generation, symbolic execution and possibly code generation. In many
cases, the parsing and typechecking functionality of Fuss is used as a front-end for
the implementation of software tools which use S as input. This is easily
achieved since Fuss is designed specifically to support user developed extensions
which access the internal representation of an S specification created by Fuss.

8 LESSONS LEARNED

The work described in this paper represents the results of using an integrated
approach to specifying a model. Using a general-purpose formal description
notation (S) as the basis of the entire project, we built models of the components
of the A TN based on the statecharts formalism, and laid the groundwork for
building analysis tools using S as input. We conclude that this integrated
approach has indeed been useful.

8.1 Usefulness of a general-purpose formal description notation

Using a general-purpose formal description notation has been valuable. The
alternative would be to use a specialized notation for state-based applications,
such as pure statecharts. Our approach allowed us to integrate a state-based
formalism with predicate logic to express the complex conditions on transitions.
We were also able to use uninterpreted constants to maintain a level of
abstraction, and parameterization to reduce duplication.

A future goal of the project is to extend the range of current analysis methods
to integrated requirements specifications given in multiple notations and at a high
level of abstraction, such as those containing uninterpreted constants. In this
paper we have demonstrated that a general-purpose notation can serve as a
foundation for expressing specialized notations and integrating notations. Future
analysis work will take advantage of the fact the semantics of the specialized

Using a formal description technique to model a global network 431

notation can also be expressed in the same framework (Day, 1993). This means
that we are not locked into a specialized notation for specification and analysis.

8.2 Usefulness of S in particular

S has been particularly appropriate as a general-purpose formal description
notation because (a) it is strongly typed and has an associated typechecker, Fuss;
(b) it is machine readable; (c) it is more human-readable than many more
symbolic notations; and (d) its power and generality allow a good deal of
flexibility in how the model components are expressed.

Another important benefit of using typed, predicate logic was the ability to
build a layer of infrastructure (i.e., the S file 'atncommon.s' mentioned earlier) on
top of the specialized FDT which tailors our use of statecharts specifically to the
purpose of modelling aspects of the SARPs.

Finally, our choice of S as the foundation for our approach made it possible to
use Fuss 'off the shelf ' for this integration task.

8.3 Classification of assumptions

This work also led to a better appreciation of the distinction between the role of
'simplifying assumptions' and other kinds of assumptions made in the
development of a formal representation, such as the 'disambiguating assumptions'
made to address aspects of the SARPs which were found to be ambiguous or
unclear. There is a natural tendency to regard any kind of modelling
simplification as something that may undermine the validity of results derived
from the model. But we have used the term 'simplifying assumptions' to describe
aspects of our formal representation which, in effect, increase the generality of
these results rather than undermining their validity.

9 ACKNOWLEDGEMENTS

In addition to the authors, a number of individuals contributed to this work,
including: from HACL, Ayman Farahat, Alec MacKay, Ofelia Moldovan, Greg
Saccone and Robert Taylor; from UBC, Kendra Cooper, Michael Donat, Ken
Wong; and from UVic, Dilian Gurov and Bruce Kapron. Michael Donat provided
helpful comments and corrections on earlier versions of this paper.

432 Part Eight Industrial Usage Reports

10 REFERENCES

Cleaveland, R., Parrow, J. and Steffen, B. (1989) A Semantics-Based
Verification Tool for Finite State Systems, in Proc. 9th IFIP Symposium on
Protocol Specification, Testing and Verification, North-Holland.

Day, Nancy (1993) A model checker for statecharts, M.Sc. thesis, Department of
Computer Science, University of British Columbia, Technical Report 93-35 .

Hare], David (1987) Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8, 231-274.

Heimdahl, Mats P.E. and Leveson, Nancy G. (1996) Completeness and
consistency in hierarchical state-based requirements. IEEE Transactions on
Software Engineering, 22(6), 363-377.

Heitmeyer, Constance L., Jeffords, Ralph D. and Labaw, Bruce G. (1996)
Automated consistency checking of requirements specifications. ACM
Transactions on Software Engineering and Methodology, 5(3), 231-261.

ISO (International Organization for Standardization) (1994) ACSE Protocol,
ITU-T Rec. X.227 -- ISO/IEC 8650-1: Edition 2. Available in electronic
format via anonymous FfP at URL 'ftp://ftp.stel.com/ pub/atnp2/iv/P2'.

Joyce, J., Day, N. and Donat M. (1994) S: A machine readable specification
notation based on higher order logic, in 7th International Workshop on
Higher Order Logic Theorem Proving and Its Applications, 285-299.

Leveson, Nancy G., Heimdahl, Mats P. E., Hildreth, Holly and Reese, Jon D.
(1994) Requirements Specification for Process-Control Systems. IEEE
Transactions on Software Engineering, 20(9), 684-107.

SARP (1996) Aeronautical Telecommunication Network Panel. Draft. Available
via anonymous FfP at URL 'ftp://ftp.stel.com/ pub/atnp2'.

Turner, K. J. (ed) (1993) Using Formal Description Techniques: An Introduction
to Estelle, LOTOS and SDL. Wiley.

11 BIOGRAPHIES

Jamie Andrews is an Assistant Professor in the Department of Computer Science,
University of Western Ontario. This work was carried out while he was a post­
doctoral fellow at the University of British Columbia (UBC) working with Paul
Gilmore and Jeff Joyce.

Nancy Day is a PhD student in the Department of Computer Science at UBC.
She expects to complete her dissertation near the end of 1997.

Jeff Joyce is a Research Scientist at Hughes Aircraft of Canada and an Adjunct
Professor in the Department of Computer Science at UBC.

