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Summary. Graph neural networks (GNNs) are gaining traction in computational fluid dynam-
ics (CFD) due to their compatibility with unstructured meshes, unlike traditional convolutional
neural networks (CNNs). However, GNNs and other data-driven approaches often violate conser-
vation laws. To address this, we propose a hybrid finite volume-graph neural network (FV-GNN)
method, which combines the traditional finite volume method (FVM) with machine learning.
This method is applied to the problem of compressible fluid flow in a cascade of blades.

1 INTRODUCTION

Recent advancements in deep learning have revolutionized computational fluid dynamics
(CFD). For example through the use of graph neural networks (GNNs). These networks enable
modeling flow characteristics and also can handle complex geometries. They excel in scenarios
involving unstructured meshes by representing data as graphs. GNNs demonstrate significant
potential in CFD simulations by effectively learning from irregular connectivity patterns inherent
in unstructured meshes [1]. However, challenges such as scalability and conservation law errors
still need to be addressed [2, 3].

To mitigate these issues, hybrid models that integrate traditional numerical methods with
neural networks have emerged. Notable examples include the work of Finn [4], which combine
the finite volume method (FVM) with neural networks. This hybrid approach enhances the
handling of boundary conditions and ensures the conservation of physical quantities.

This paper introduces a hybrid finite volume - graph neural network (FV-GNN) method. In
this approach, the neural network is used to predict fluxes at volume interfaces, traditionally
determined by methods such as Rusanov or Van-Leer approximations. This innovation reduces
computational demands and leverages GPU compatibility, significantly enhancing performance.
The FV-GNN method not only simplifies implementation but also ensures conservativity, pre-
senting a promising solution for CFD applications on unstructured meshes.

2 HYBRID FINITE VOLUME - GRAPH NEURAL NETWORK METHOD

As the mathematical model we consider the system of Euler equations, which describe com-
pressible flow of an inviscid fluid. The fundamental scheme of the FVM is outlined as follows
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where ∆t is the time step, Ai is the area of the finite volume, ne denotes the number of faces
and H is the numerical flux. Symbols nj and ∆lj denote the normal vector and the length
corresponding to the j-th face, respectively.

GNNs solve differential equations on unstructured meshes by updating node values based on
neighboring nodes variables. This process typically involves two steps: predicting values at the
graph edges connecting nodes and using these values to update the node variables. Both steps
are modeled via a multilayer perceptron (MLP) [1].

In this study, we integrate GNNs with the cell-centered FVM approach. By considering the
dual graph of the FVM mesh (Fig. 1), the FVM scheme mimics GNN behavior. Our hybrid
FV-GNN method replaces the second GNN step with the FVM scheme
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retaining the first GNN step as an neural network approximation H of the FVM numerical flux
H. This hybrid method ensures conservativity, unlike pure GNNs, and simplifies implementation
by substituting the complex numerical flux calculation in FVM with MLP predictions.

Figure 1: FVM mesh (dashed lines) and the corresponding dual graph (solid lines) (left). Architecture
of the employed Multilayer Perceptron (right).
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3 CASE STUDY

To validate the proposed computational model, we consider the problem of inviscid compress-
ible fluid flow through a blade cascade. The blade profiles are defined using two Bezier curves,
illustrated in Fig. 2. A spacing of 1 unit between the blades is maintained, and a structured
quadrilateral computational mesh is used to discretize the area between the blades, as shown in
Fig. 2.

To handle boundary conditions, we introduce a ghost cell, serving as an extra layer of cells.
At the inlet, we specify the vector of conservative variables within this ghost layer. And for the
outlet, density and velocity components are extrapolated from the flow field here. On the solid
impermeable wall, we determine the normal momentum and subsequently construct the vector
of conservative variables. For the periodic boundary, values are simply copied.

Figure 2: Considered test profiles. Profile 1 (left) and Profile 2 (middle). Computational mesh (right).

4 TRAINING DATASET

Creating an effective training dataset requires diversity and randomness in generating the vec-
tors wR and wL. This is achieved by defining specific ranges for the variables: ϱ = [ϱmin, ϱmax],
u, v = [−umax, umax] and p = [pmin, pmax]. Within these intervals, random values ϱr, ur, vr,
and pr are generated. These random values are then used to construct a vector of conservative
variables:

w =

[
ϱr, ϱrur, ϱrvr,

pr
κ− 1

+
1

2
ϱr(u

2
r + v2r )

]
.

Additionally, the unit normal vector n = [sin(αr), cos(αr)] is generated by selecting a random
angle αr ∈ [0, 2π].
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With these randomly generated vectors wR, wL, and n, the training dataset is constructed.
To ensure consistency, all values within the input and output vectors are normalized to the
interval [0, 1].

5 NUMERICAL RESULTS

For the purpose of validating the proposed approach, we trained three neural network models
designed for the approximation of numerical fluxes. The hyperparameters of the used models are
illustrated in Table 1. These models differs in hidden layer sizes and are designed to encompass
Rusanov flux type [5].

Table 1: Hyper-parameters of used neural network

input neurons 10
output neurons 4
hidden layers 2
neurons in hidden layer N [64, 128, 256]
activation function ReLU
activation function at output layer sigmoid

The created models were tested on the problem of flow over a cascade of blades, as described
in previous section. The simulations were conducted for two different airfoil profiles and two
distinct pressure ratios, Π = 0.5 and Π = 0.7.

Fig 3 display the pressure field distributions for both profiles and pressure ratio Π = 0.7,
alongside their comparison with CFD calculations. Further, the table 2 presents the error in
drag and lift forces computed based on the pressure distribution along the airfoil.

Fig 4 compare the pressure field for airfoil profile 2 and a pressure ratio of Π = 0.7 with the
CFD results.

The consistent trend observed in all obtained results indicates that with an increasing number
number of neurons increase the model’s capability to capture the physical phenomena under
consideration. The results demonstrate that model with 256 neurons in each hidden layer is
sufficiently accurate with the error in lift and drag remaining below 7%.

6 CONCLUSIONS

In this paper, we introduce a hybrid FV-GNN method that merges the traditional finite
volume approach for discretizing partial differential equations governing compressible inviscid
fluid flow with a neural network to approximate the numerical flux across boundaries. This study
aims to examine how varying the number of neurons in the neural network affects the resulting
pressure field in specific scenarios. The findings reveal that a neural network with 256 neurons
in the hidden layers closely approximates the numerical flux, producing results comparable to
the exact numerical solution. With 128 neurons, the solution maintained relatively low error,
although some deviations in the pressure field were observed in certain regions. A configuration
with 64 neurons proved insufficient. Given the complexity of the problem, these results suggest
the broad applicability of the proposed method. A significant advantage of this approach over
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Table 2: Rusanov flux

profile 1 profile 2
pressure ratio Π = 0.7 Π = 0.5 Π = 0.7 Π = 0.7

size 64

Lift error [%] 24.7 32.9 14.2 11.9
Drag error[%] 15.4 23.2 9.7 10.6

size 128

Lift error [%] 1.1 3.9 1.4 0.7
Drag error[%] 1.0 8.2 1.1 2.0

size 256

Lift error [%] 1.4 6.7 2.7 0.6
Drag error[%] 0.6 3.4 1.3 2.2

Figure 3: Pressure distribution along Profile 1 (left) and 2 (right) with the pressure ratio of Π = 0.7
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Figure 4: Comparison of the pressure distribution for the CFD calculation (left) and the model with
256 neurons (right) for the Rusanov flux, Profile 2, and the pressure ratio of Π = 0.7
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classical FVM is its replacement of complex flux functions with a neural network, simplifying
the implementation of the computational scheme.
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