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ABSTRACT

Machine vision is used to detect dense, small rod-end joint bearings in sliding ball 
surfaces with little feature information and high variability. However, this leads to 
inaccurate identification, affecting production efficiency. This study proposes a deep-
learning object-detection algorithm model that allows the network to retain more 
semantic information. We introduced the space-to-depth convolution (SPD-Conv) step-free 
convolution module to improve the backbone network and developed a multi-level feature 
fused SPD (MFSPD) deep feature fusion module to redesign the neck network to improve 
the feature extraction ability and detection accuracy for small targets. Furthermore, we 
added a small P4 detection head in the head network (i.e., prior box acquisition on the 
dataset using the weighted k-means algorithm), increased the matching degree of the prior 
box and feature layer, and accelerated the model convergence. To improve the 
confidence propagation clustering (CP-Cluster) analysis algorithm for post-processing, we 
optimized the prediction box confidence degree and detection speed. The algorithm 
performance was evaluated on homemade, T-LESS, and COCO datasets. The mAP@.5 
values of the target detection algorithm for the homemade and T-LESS datasets were 96.9% 
and 93.8%, respectively, and the mAP was 55.9% for the COCO dataset. The experimental 
results indicate that the algorithm has a high detection accuracy and good feature 
extraction ability. Thus, it has considerable advantages for small-object detection and 
provides a reference for the detection of small parts.

1 Introduction

Rod-end joint bearings are indispensa ble in mechanical equipment, acting analo gously to joints
in the human body. Owing to their large variety and minute differ ences [1], sorting bearings via
manual detection is ineff icient and has low accur acy. Therefore, machine vision and robotics have
been introduced in object detection tasks [2]. Machine-vision-guided robotics can signif icantly increase
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detection accuracy and efficiency. However, in CNC machine tool production lines employing a
hybrid manufacturing approach with varying models and sizes, traditional vision-based detection
of small bearings remains challenging due to the complex industrial environment. Issues such as
surface ref lections, disordered stacking, and the high variability of the sliding ball surfaces often result
in insuff icient feature infor mation. To overcome these challenges , we have employed deep learning
techniques . The small size of the rod-end bearings is illustrated in Fig. 1.

Figure 1: Small rod-end joint bearing

Current object detection algorithms based on deep learning can be broadl y categoriz ed into two-
stage [3–6] and one-sta ge [7–10] approaches . K im et al. [11] demonstr ated that integrating super-
resolution (SR) with object detection significantly improves accur acy for small objects by enhancing
image resolution, thereby reducing false detections . Wahyudi et al. [12] emphasiz ed the effecti veness
of strategies such as multiscale feature fusion and contextual infor mation enhancement in addressing
the limitations of small-object detection. Further more, Park et al. [13] introduced a multimodal data
fusion approach that mitigates the challenges of noise and low resolution, further improving detection
perfor mance in complex environments. Despite these advancements , several limitations persist in small
object detection:

1. Insuff icient feature representa tion: Existing deep learning models struggle with inadequa te
feature infor mation for small objects due to limited spatial resolution and multiple downsampling
operations [14,15]. The large receptive fields and inherent low-resolution characteristics of these
networks further exacerba te the challenge of extracting discrimina tive features for small objects ,
leading to increased false positives and false negatives.

2. Suboptimal utiliza tion of contextual infor mation: While contextual cues are crucial for small
object detection, current methods often fall short in effecti vely integrating multi-scale feature fusion
and contextual infor mation enhancement [16,17]. This deficiency hinders the model’s ability to
comprehend small objects within their environmental context, particular ly in complex scenes or under
occlusion.

3. Limita tions of Non-Maxim um Suppr ession for dense small objects: Conventional Non-
Maxim um Suppr ession (NMS) algorithms face challenges when processing densely cluster ed small
objects . The fixed IoU threshold in standar d NMS leads to suboptimal perfor mance in scenarios
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with tightly packed small targets [18,19]. This constr aint results in decreased recall rates and reduced
localiza tion accur acy, especiall y in complex scenes where small objects are in close proximity or
partiall y occlude each other.

To address these limitations and achieve the required detection accuracy for small rod-end joint
bearings , we propose several improvements to the existing object detection frameworks. Our approach
focuses on enhancing feature extraction capabilities, optimizing feature fusion, and refining post-
processing techniques .

Among the current state-of-the-art object detection algorithms , the YOL O series has shown
promising results [20]. While YOLOv6 [21] and YOLOv7 [22] demonstr ate superior detection accuracy
and model perfor mance compar ed to YOLOv5, they incur higher computa tional costs in terms of
f loating point operations (FL OPs) and parameter counts. In practical applica tions, particular ly for
small object detection tasks , the YOLOv5 architectur e offers a favorable balance between perfor mance
and efficiency. YOL Ov5, an improved version of YOLOv4 [23], exhibits signif icantly higher detection
speed and accuracy [24], while providing models with various trade-off options for accuracy and speed.

Building upon these considerations, we based our study on YOL Ov5 and proposed the SCP-
YOLOv5 object detection algorithm. Our approach incorpor ates enhanced feature fusion modules and
an improved conf idence propagation clustering algorithm to address the afor ementioned limitations of
small object detection. The detailed improvements and methodolo gy of our proposed SCP-Y OLOv5
algorithm are presented in Section 2.

To validate the effecti veness of our proposed method, we developed a specializ ed rod-end joint
bearing dataset and evaluated the algorithm’ s perfor mance using this custom dataset along with the
established T-LESS and COCO benchmar ks.

2 Methods

The production and classif ication of rod-end bearings involve complex situations, such as stacking
and occlusion, resulting in insuff icient feature infor mation. SCP-Y OLOv5 addresses the afor emen-
tioned issues by making multiple improvements to the backbone , neck, and head to enhance feature
extraction and strengthen representa tion capability. In the backbone , more feature map outputs are
added, and the SPD-Con v [25] module is introduced to improve the network structur e and feature
extraction capabilities. In the neck, the MFSPD module based on SPD-Con v is proposed to redesign
the structur e for better retention of the fused feature infor mation. In the head, the P4 detection head is
added, and weighted k-means [26] clustering is utilized on the rod-end bearing data to obtain suitable
anchors , increasing the detection accuracy and convergence speed for small rod-end bearings. Finall y,
the confidence propagation clustering (CP-Cluster) algorithm [27] is further enhanced in the post-
processing stage. This improvement effecti vely addresses the limitations of traditional NMS methods,
particular ly in mitigating the issue of detection degradation caused by excessive bounding box
overlap. Through these improvements, SCP-Y OL Ov5 solves problems in rod-end bearing detection
and enhances the detection perfor mance. This strengthens the detection and classif ication capabilities
for small targets.

2.1 Backbone Design
Existing CNN module architectur es use strided convolutions or pooling layers in series or parallel,

which cause loss of fine-grained texture infor mation and less efficient feature learning for rod-end joint
bearings—particular ly small ones. To address these problems, we introduced an SPD-Con v module
into the backbone . The module contains a space-to-depth layer and non-strided convolution layer.
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The space-to-depth layer uses an unprocessed image transfor mation technique [28] to split the rod-end
joint bearing feature maps from spatial dimensions to concatenated channel dimensions, as shown in
Fig. 2.

Figure 2: SPD-Con v module structur e

The backbone is based on the improved CSPDar knet53 with an additional 160 × 160 × 128 feature
map output for subsequent small-object detection. All strided convolution layers are replaced with
SPD-Con v modules. The improved architectur e outputs four feature maps with scales of 160 × 160 ×
128, 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024. They are then input to the neck for further
fusion and enhancement, as shown in Fig. 3.

2.2 Neck Design
For accurately detecting small rod-end bearings , a P4 detection head was added. The increased

depth of the neck provides support for the changes in the head, while the increased depth raises the
risk of long-ter m memoriza tion deficiency. To retain more feature infor mation and enhance the feature
intensity of small rod-end bearings , the module had to be able to retain more infor mation and fuse
features to increase the feature value intensity for each dimension to contain more feature infor mation.
Accor ding to this concept, a deep-fea ture fusion module called the MFSPD based on the SPD module
was developed. Its structur e is shown in Fig. 4.

2.3 Head Design
2.3.1 Detection Head Design

The head of the rod-end bearing has high variability. The same joint bearing can exhibit different
sliding spherical surfaces , as shown in Fig. 5. The head network of YOL Ov5 contained only P8,
P16, and P32 detection heads. To solve the problem of reduced detection accuracy caused by the
afor ementioned factors and adapt the model to the detection of small rod-end bearings , a P4 detection
head was added to the head to output a 160 × 160 feature map.
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Figure 3: Backbone structur e: The novel SPD-Con v module and additional feature map output
channel address limitations in existing CNN architectur es. This design preserves fine-grained texture
infor mation and enhances feature learning efficiency for rod-end joint bearings , particular ly beneficial
for smaller specimens. The structur e mitigates infor mation loss typicall y associa ted with strided
convolutions or pooling layers, enabling more accurate and detailed anal ysis across various bearing
sizes
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Figure 4: MFSPD structur e: The MFSPD , based on the SPD module, is designed to retain more
detailed feature infor mation and intensify feature values across dimensions. This structur e mitigates
the risk of long-ter m memoriza tion deficiency while improving the detection accuracy of small rod-end
bearings through advanced feature fusion and retention techniques

Figure 5: Differ ent angles of sliding spheres

2.3.2 Obtaining Prior Boxes

The dataset anchor had to be determined before training. Suita ble anchors can increase the
detection accuracy and accelerate the convergence of the model. The anchor of YOLOv5 was obtained
from the COCO dataset, whereas the rod-end bearing dataset had small sizes and dense and mixed
clutter ed stacking, resulting in an anchor mismatch with the dataset. To solve these problems, re-
clustering the annota tion boxes and obtaining suitable anchors were necessary. In this study, a weighted
k-means algorithm based on the original k-means algorithm is proposed, in which a weight coeff icient
is introduced for each sample. Accor ding to the chaotic detection state of the rod-end bearing, the
maximum IoU of the cluster centers is used to evalua te the clustering results. The steps of the algorithm
are as follows:

(1) The clustering center K is ada ptively adjusted accor ding to the class label file of the dataset.
(2) The distance from each sample to the center point of the feature map is calcula ted using the

follo wing for mula:
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dic =
√(

xi − x̂c

)2 + (
yi − ŷc

)2, (1)

where xi and yi denote the i horizontal and ordinate samples, respectively, and x̂c and ŷc denote the c
central horizontal and ordinate samples, respectively.

(3) The weight of the cluster center of each sample is considered, and the weight matrix is
constructed. Eq. (2) gives the mean value of the distances between all samples and a central
point a, and Eq. (3) is the weight calcula tion for mula.

da = 1
n

n∑
i=1

dic, (2)

wijc = max
(

0, − dic − dc√
1
n

n∑
i=1

(
dic − dc

)2

)
. (3)

Here, wijc is the weight of the i sample and j cluster center, and c is the feature map center point
corresponding to the cluster center.

(4) The target function D, i.e., the cluster center, is updated:

D = min
n∑

i=1

k∑
j=1

[
1 − wijc

Bi ∩ Cj

Bi ∪ Cj

]
, (4)

where Bi represents the width of the annota tion box for sample i, and Cj denotes the preselection box
for the j cluster center.

(5) All the cluster centers are iteratively updated until the cluster -center position is constant.

2.4 Overall Structure of Improved Algorithm
Accor ding to the improvements and designs of the afor ementioned structur es, the overall structur e

of the SCP-Y OL Ov5 algorithm is proposed, as shown in Fig. 6. The input image size is 640 ×
640 × 3 pixels, and the backbone outputs four feature maps of different sizes to the neck for
further enhancement and fusion of features. F inally, the head perfor ms target-ta g classif ication and
prediction-bo x regression.

A feature pyramid network (FPN) is used in the neck. Upsampling is perfor med from bottom to
top, and convolution pooling is perfor med from top to bottom to fuse feature maps at differ ent levels.
This increases the feature value intensity and improves semantic features to enhance the multiscale
target detection capabilities.

In the feature pyramid, deeper feature maps contain higher-level semantic features, whereas
shallo wer feature maps contain more target location infor mation. La yer 25 fuses 4 scale feature maps
and outputs a 160 × 160 × 128 feature map. The output is divided into two paths: one output is input
to the P4 detection head and the other is used to enhance the target position infor mation from top to
bottom.
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Figure 6: SCP-Y OLOv5 structur e

2.5 Processing of Detection Results
Considering the defects of the traditional Non-Maxim um Suppr ession (NMS) algorithm, the

prediction box with the highest conf idence is not necessaril y the best prediction box; sorting is required
befor e sequential processing. To address such issues, the CP-Cluster algorithm [28] automa tically
propagates messages between adjacent prediction boxes. This helps adjust the conf idence after multiple
iterations and improve strong conf idence areas while reducing weak ones, which allows fully parallel
processing, increasing the algorithm processing speed. F urther more, rod-end bearings are prone to
situations in which the prediction boxes severely overlap when stack ed. Therefore, the IoU is not
suitable as an evalua tion metric. The distance IoU (DIoU) [29] was introduced to replace the IoU as a
parameter for evalua ting the boundary-bo x location. When prediction boxes overlap, negative message
passing suppression is more reasona ble to ensure accurate prediction of occluded objects in clusters.
When prediction boxes are non-intersecting, the weakest friends can still provide the most precise
movement directions for the strongest friend. The improved scheme combines the two algorithms to
resolve the speed and overlap issues of the NMS algorithm. In Fig. 7, the detection results of the CP-
Cluster algorithm and the improved scheme are shown on the left and right, respectively.

As shown in Fig. 8, all the candida te boxes are first converted into an undirected graph set, and
then the candida te boxes pass positive and negative messages to each other in the graph. Finall y,
the discarded candida te boxes are eliminated, and the confidence of the selected candida te boxes is
increased.
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Figure 7: Detection results of the CP-Cluster algorithm (left) and the improved scheme (right)

Figure 8: CP-Cluster processing f low diagram

In positive message passing, friend clusters with lower conf idence and an IoU higher than a
specif ic threshold are judged as weaker. The conf idence of the strong side is updated according to
the number and conf idence of weaker friends, as follows:

Mp (i) ← Q
Q + 1

∗
(

1 − P̂ (bi)
)

∗ max
b̂∈Wbi

P̂
(

b̂
)

, (5)

where wbi denotes the set of weak friends, and P denotes the degree of confidence.
In the spread of negative news, the original ranking from high to low changes to a graph structur e,

eliminating the ranking and suppressing it twice. Additionall y, an SUP matrix is added to prevent
the prediction box from being repeatedly suppressed by the same prediction box, and the role of
hyperpar ameter ζ is to limit this phenomenon.

Eq. (6) is suppressed by the strongest friend, and Eq. (7) updates the weak-side confidence.

T(bj ,bi) ← α ∗ P̂
(
bj

)
P̂ (bi)

+ (1 − α) ∗ DIoU
(
bj, bi

)
θ

, (6)

Mn (i) ← P̂ (bi) ∗ DIoU

(
bi, arg max

bj∈Nbj
,SUPj,i≤ζ

T(bj ,bi)

)
, (7)

DIoU
(
bj, bi

) = 1 − IoU + ρ2
(
bj, bi

)
c2

. (8)
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Eq. (8) gives the DIoU evalua tion parameters. Here, ρ represents the Euclidean distance between
two center points, and c represents the diagonal of the minimum rectangle that can cover both the
anchor and the target box.

Through iterative cycles, the algorithm converges to the optimal solution. Finall y, prediction boxes
with low confidence are filtered out, leaving only the prediction boxes with the highest conf idence.

2.6 Experimental Environment and Model Training
2.6.1 Experimental Configuration

Details regarding the configuration of the experimental environment are presented in Table 1.

Table 1: Experimental environment configuration

Softw are and hardware environment Model parameters

OS Ubuntu 20.04
Development langua ge Python 3.7.0
Deep-learning framework PyTorch 1.8
CUD A CUD A version 11.1
IDE PyChar m2022.1.3 +Anaconda3
GPU NVIDIA GeForce RTX3050Ti
CPU AMD Ryzen7 5800h 16G
Da ta processing tool OpenCV 4.5.1.48
Camer a Intel R EALSENSE D435I
Da ta annota tion tool La belImg

2.6.2 Experimental Dataset

Using a D435I camera, 1110 rod-end bearing images with a resolution of 640 × 480 were collected
by calling the SDK. Da ta annota tion was perfor med using La belImg with the labels divided into two
categories: SI and SA. The lower left part of Fig. 9a shows the SI inner row rod-end bearing, and
the upper right part shows the SA outer row rod-end bearing. Random fusion data augmenta tion
was used for the first 1000 images, with one image expanded and augmented to 12 images to create
a dataset containing 13,110 images. The training, valida tion, and test sets contained 8888, 2222, and
2000 images, respectively. To validate the proposed algorithm, the T-LESS dataset was selected for
target detection, because the nature of the data is similar to that for the actual project. Therefore,
this dataset was used to evaluate the algorithm perfor mance. The COCO dataset was also used
for compar ative experiments. Fig. 9b shows sample images from the rod-end bearing dataset (RJB
dataset), and Fig. 9c shows sample images from the T-LESS dataset.

The training was perfor med using a modif ied YOLOv5 model. We set both the learning rate
and recurrent learning rate to 0.01, the stochastic gradient descent momentum to 0.937, the weight
decay coeff icient to 0.0005, and the batch size to 8. The loss-function curves of the model training and
validation are shown in Fig. 10.
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Figure 9: Experimental dataset. (a) Annota tion dataset; (b) RJB dataset; (c) T-LESS dataset

Figure 10: Curves of various loss functions during the training process

Here, the vertical coordinate represents the ratio of iterations to epochs, and the horizontal
coordinate represents the loss, where box_loss, obj_loss , and cls_loss represent the means of the
prediction box GIoU Loss , target detection loss, and label classif ication, respectively, and “tr ain” and
“v al” denote the training and valida tion stages, respectively. Because the rod-end joint bearings were
divided into two label categories, i.e., inner tooth rod-end joint bearing SI and outer tooth rod-end joint
bearing SA, the loss converged rapidly. As the weighted k-means algorithm was used to obtain suitable
anchor boxes, the prediction box and target detection loss converged rapidly, befor e 100 iterations. The
weighted k-means algorithm signif icantly affects the SCP-Y OLOv5 algorithm model.

3 Results and Discussion
3.1 Analysis of Evaluation Indices and Results

The experimental indices were the precision (P), recall (R), mean average precision (mAP), and
each AP category (mAP). The corresponding for mulas are as follows:
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Precision = TP
TP + FP

= TP
AllDetections

, (9)

Recall = TP
TP + FN

= TP
AllGroundTruths

, (10)

AP =
∫ 1

0

PRdr, (11)

mAP = 1
n

n∑
i=1

AP. (12)

An ablation experiment was conducted to verify the effecti veness and generalization of the
improved algorithm with the addition of the weighted k-means algorithm, improved CP-Cluster
algorithm, SPD-Con v module, and MF SPD module (only in the neck)—corr esponding to Schemes
1 to 4 in Table 2—and each model was compar ed with the final improved algorithm SCP-Y OL Ov5.

Table 2: Results of the ablation experiment

Algoritm Weighted
k-means

Improved
CP-Cluster

SPD-Con v MFSPD P (%) R (%) mAP@0.5
(%)

mAP@0.5:
0.95 (%)

FPS
SI SA SI SA

YOLOv5s × × × × 94.6 93.8 90.4 90.1 93.7 89.5 121
Scheme 1 √ × × × 95.3 94.2 91.8 90.8 94.2 90.1 113
Scheme 2 × √ × × 95.1 94.1 90.7 90.5 94.4 89.8 119
Scheme 3 × × √ × 96.7 96.5 93.6 93.4 94.9 91.6 102
Scheme 4 × × × √ 95.2 94.3 90.9 91.3 94.5 90.8 109
SCP YOL Ov5 √ √ √ √ 98.8 98.5 96.3 96.3 96.9 92.5 106

The experimental data in Table 2 indicate the following:
(1) The mAP of the SCP-Y OL Ov5 algorithm reached 96.9% with a threshold of 0.5, and the

detection accuracy reached 92.5% with a threshold between 0.5 and 0.95.
(2) In Scheme 1, the addition of the weighted k-means algorithm increased the precision for SI

and SA by 0.7% and 0.4%, respectively, indicating an improvement in the matching between the prior
boxes and feature map layers in the model.

(3) In Scheme 2, with the addition of the improved CP-Cluster to the YOL Ov5s model, all the
metrics increased slightly, and the FPS increased, indicating the efficacy of the parallel processing and
DIoU metrics of the improved algorithm.

(4) The detection accuracy for SA was slightl y lower than that for SI because there were fewer
SA samples in the dataset. However, in Scheme 3, adding the SPD-Con v module to the detection
model increased the precision for SI and SA by 2.1% and 2.7%, respectively. Meanw hile, the recall
for SI and SA increased by 3.2% and 3.3%, respectively. This indicates that the SPD-Con v module is
effecti ve for small-object detection, improving the infor mation extraction capabilities of the network
and increasing its detection accuracy.

(5) In Scheme 4, adding the MFSPD module to the neck improved all the metrics, indicating a
signif icant enhancement in the feature fusion capability of the model neck.
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The ablation experiment indicated that the weighted k-means, improved CP-Cluster , SPD-Con v,
and MFSPD modules positively affect the model. Additionall y, the combina tion of all four achieved
the best results, with the precisions for SI and SA reaching 98.8% and 98.5%, respectively.

3.2 Comparison with Different Algorithms
To further verify the perfor mance and advantages of the proposed algorithm, it was compar ed

with mainstr eam algorithms , i.e., YOLOv3–Y OL Ov7, for the rod-end bearing dataset, as shown in
Table 3.

Table 3: Detection perfor mance of differ ent algorithms

Algorithm RJB dataset T-LESS F LOPs (G) Number of parameters (M)

mAP@0.5 (%)

YOLOv3 88.6 80.3 140.7 61.5
YOLOv3-tiny 85.3 76.6 5.6 8.2
YOLOv4 90.7 87.3 119.8 52.5
YOLOv4-tiny 87.2 85.4 6.9 5.9
YOLOv5s 93.7 91.8 16.1 7.1
Proposed 96.9 93.8 25.3 9.5
YOLOv6s 93.5 91.7 43.9 17.3
YOLOv7 98.7 95.3 103.4 36.3
YOLOv7-tiny 94.8 92.2 13.2 6.1

The target and backgr ound contrasts of the RJB dataset are evident; therefore, the overall
effect is better than that of the T-LESS dataset. The mAP values of YOL Ov3 and YOLOv4 were
80.3% and 87.3% respectively at a threshold above 0.5, which were lower than that of the proposed
algorithm. Additionall y, the large numbers of model parameters and FL OPs make deployment on
mobile devices diff icult. YOL Ov3-tiny and YOL Ov4-tiny had fewer parameters and F LOPs than the
proposed algorithm. Their detection speeds were higher, but their accur acies were lower. Compar ed
with YOLOv6 and YOL Ov7, the mAP@0.5 values of the algorithm were 2.1% higher and 1.5% lower,
respectively; however, the number of parameters and FL OPs exceeded those of the proposed algorithm.

As shown in Table 4, the proposed algorithm improves the mAP on the COCO dataset by 1.3%
compar ed to the previous version. This approaches the perfor mance of YOLOv7 and surpasses other
mainstr eam algorithms . Therefore, SCP-Y OL Ov5 demonstr ates balanced perfor mance compar ed to
popular existing methods, with competiti ve strengths.

To further investiga te the significance of differences between the four models (YOL Ov5s, SCP-
YOLOv5, YOLOv6s, and YOLOv7), we evalua ted their perfor mance using Repeated Measur es
ANO VA and a Friedman Test based on mAP@0.5 results from 10 experimental trials for each
model,as shown in Table 5. The Repeated Measur es ANO VA yielded a statisticall y significant result
(F(3, 27) = 252.38, p < 0.0001), indicating signif icant perfor mance differences among the models.
Additionall y, the non-par ametric Friedman Test confirmed these findings, with a x2 statistic of 28.12
and p < 0.0001, further supporting the conclusion that the models differ significantly in terms of
detection accuracy. These results suggest that SCP-Y OLOv5 and YOL Ov7 significantly outperfor m
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YOLOv5s and YOL Ov6s in small object detection tasks , valida ting the effecti veness of the proposed
improvements in SCP-Y OLOv5.

Table 4: Perfor mance of different algorithms for the COCO dataset

Algorithm mAP (%) FPS GPU

Faster R-CNN [5] 34.7 7 RTX3050Ti
Mask R-CNN [6] 37.8 5 RTX2070
YOLOv3 33.6 35 RTX3050Ti
YOLOv4 43.5 62 RTX2070
YOLOv5s 54.6 126 RTX3050Ti
YOLOv6 51.9 135 RTX2070
YOLOv7 56.4 161 RTX2070
Proposed 55.9 106 RTX3050Ti

Table 5: The results of 10 tests on the RJB dataset for different models

Algorithm mAP@0.5 (%)

YOLOv5s 90.4, 90.2, 90.6, 90.3, 90.5, 89.2, 88.9, 86.7, 89.3, 89.7
SCP-Y OLOv5 96.9, 96.8, 97.0, 96.0, 96.9, 95.7, 96.7, 96.2, 95.8, 96.4
YOLOv6s 93.5, 93.6, 93.4, 93.7, 93.5, 93.3, 92.8, 92.7, 93.1, 92.5
YOLOv7 98.7, 98.6, 98.8, 98.7, 98.6, 97.3, 97.1, 98.1, 98.2, 97.9

3.3 Error Analysis and Outlook
Although the detection accuracy of the SCP-Y OL Ov5 algorithm for the homemade dataset was

increased by 3.1% for mAP@0.5 compar ed with the original YOLOv5s algorithm, a 3.2% error
remained.

The main sources of error may have been the following:
(1) Owing to the light source conditions of the experimental environment, small bearings appear ed

to be ref lective during image capture, resulting in a loss of key feature infor mation.
(2) The dataset was insuff icient. The top sliding spherical surface of the rod-end bearing had a

highly variable structur e with different angles.
(3) Although the deep feature fusion module enhances the feature fusion, room for improvement

exists in feature representation capabilities.
In future research, we plan to replace the light source to ensure that the light evenly illuminates

the surface of the target object and retains the maximum amount of feature infor mation, increase
the number of sliding spherical images from various angles to increase the diversity of the dataset,
prune the model, and compress and optimiz e the model to reduce the number of parameters and the
computa tional load while maintaining its accuracy.
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3.4 Detection Results
To intuitively demonstr ate the detection effect of the improved algorithm, the YOLOv5s and SCP-

YOLOv5 algorithms were used for detection with the rod-end-bearing dataset, as shown in Fig. 11
(YOL Ov5 algorithm on the left, SCP-Y OLOv5 algorithm on the right).

Figure 11: Comparison of test results

As shown, the confidence of the SCP-Y OL Ov5 algorithm for small-bearing detection was higher
than that for the YOLOv5 algorithm. Evidentl y, SCP-Y OLOv5 can detect small objects well, and the
detection frame is closer to the target, indicating that the improved model is more suitable for practical
applica tions.
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4 Conclusions

Detection was perfor med with rod-end bearing, T-LESS , and COCO datasets using various
algorithms . In the experiments, the SCP-Y OL Ov5 algorithm achieved the most balanced perfor mance
and good detection results, meeting the requirements of practical applica tions, with regard to both
detection accuracy and speed. It has a significantly higher capability to extract feature infor mation
from small rod-end bearings. Compar ed with the YOL Ov5s algorithm, the SCP-Y OL Ov5 algorithm
improved the mAP@0.5 by 3.2% and 2.0% for the RJB and T-LESS datasets , respectively. Fur -
thermore, it improved the mAP by 1.3% for the COCO dataset. This study provides new research
perspecti ves on overcoming the limitations of insuff icient feature infor mation and weak contextual
representa tion in small-object detection. It also proposes a novel solution for detecting randoml y
stack ed small parts in CNC machine tool production environments. Although the model detection
accur acy was improved, the detection speed was lower than that befor e the improvements. Futur e
studies may aim to increase the detection speed while ensuring detection accuracy.
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