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ABSTRACT  

A sound understanding of subsurface geological conditions is crucial for the digitalisation of underground infrastructure. 

The building and updating of underground digital twins heavily rely on sparse geotechnical measurements (e.g., 

boreholes) retrieved from the ground, and an efficient sampling strategy can facilitate the interpretation of subsurface 

heterogeneities. Geotechnical sampling design can be viewed as a constrained optimization process that aims to obtain as 

much geological information as possible from a limited number of sampling locations within a given site boundary. In 

this study, a data-driven intelligent sampling strategy is proposed to optimize borehole locations for a multi-stage site 

investigation of a three-dimensional (3D) geological domain. The initial sampling plan is determined using weighted 

centroidal Voronoi tessellation, which assigns uniform sampling densities to zones of different importance. Measurements 

obtained from the initial stage are combined with prior geological knowledge to build underground digital twins using an 

image-based stochastic modelling method. Multiple realizations of the geological domain can be developed under the 

framework of Monte Carlo simulation, and stratigraphic uncertainties associated with multiple random realizations can 

be quantified using information entropy. The location with the maximum entropy is adaptively selected as the next optimal 

sampling location. The proposed method is the first sampling strategy that can explicitly consider 3D subsurface 

stratigraphic variations. The performance of the proposed multi-stage sampling strategy is demonstrated using a 

simulation example. Results indicate that the proposed method can efficiently identify the optimal sampling locations 

while accounting for irregular site geometries and 3D subsurface stratigraphic uncertainties.  
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1. Introduction 

The purpose of geotechnical site investigation is to 

explore subsurface heterogeneities (e.g., stratigraphic 

distribution) using site-specific data, such as boreholes 

and cone penetration tests. Due to budget limits and site 

constraints, only limited boreholes or soil/rock samples 

are retrieved from the ground. Therefore, how to 

determine the optimal sampling locations to obtain as 

much site-specific information as possible is a key 

challenge. Conventional site sampling strategies are 

empirical and often involve equal sampling spacing with 

regular patterns. For example, Eurocode 7-2 (EN-1992-

2, 2007) recommends grid patterns with typical sampling 

spacings of 15 ~ 40 m and 25 ~ 75 m for high-rise 

buildings and dams, respectively. However, this 

empirical sampling strategy assigns equal importance to 

each location and does not consider project-specific 

requirements. For instance, dense samples should be 

retrieved from areas that are susceptible to ground 

movements. 

Sampling design and site optimization have been an 

important topic in different disciplines, such as 

geosciences (McBratney and Webster 1981), and 

geotechnical engineering (Wang and Li 2021). 

Mathematically speaking, site planning can be 

formulated as a constrained optimization problem that 

aims to minimize uncertainties and impacts on 

subsequent engineering design and analysis. In 

geotechnical engineering domain, many previous studies 

have attempted to optimize site investigation schemes 

using either random field theory or machine learning 

strategies. Zhao and Wang (2019) and Wang and Li 

(2021) proposed Bayesian Compressive Sensing (BCS) 

to predict spatially varying soil properties and leveraged 

the theory of information entropy to optimize a multi-

stage sampling process. However, previous studies 

mainly focused on the characterization of soil property 

spatial variability, and there is a lack of robust strategies 

to optimize site investigation will full consideration of 

three-dimensional subsurface stratigraphic uncertainty.  

To address the above-mentioned challenges, this 

study proposes a smart sampling strategy that can 

effectively explore uncertainties associated with 



 

 

subsurface stratigraphy as well as project-specific 

constraints to optimize site investigation schemes. The 

strategy can flexibly determine the initial sampling 

locations, taking full account of project-specific needs. 

The obtained samples are then integrated with prior 

geological knowledge for stochastic modelling of 

subsurface geological domains. Subsequently, the 

quantified stratigraphic uncertainty is leveraged to 

specify new sampling locations for the next round of site 

investigation. The proposed method is the first data-

driven smart sampling strategy that explicitly considers 

3D stratigraphic uncertainties and irregular site 

geometries. The performance of the proposed method is 

demonstrated through a simulation example. 

   

2. Framework of the proposed smart 
sampling method 

 
Figure 1. Framework of the smart sampling strategy  

 

Figure 1 shows the framework of the proposed smart 

sampling strategy. The strategy starts with the 

determination of site and building boundary. For a given 

number of sampling points, the initial sampling plan is 

determined using Weighted Centroidal Voronoi 

Tessellation (WCVT), a plane partition tool. The 

obtained site-specific samples are then integrated with a 

stochastic simulation method called 3D Iterative 

Convolution eXtreme Gradient Boost (IC-XGBoost3D) 

for predicting 3D subsurface geological domains. The 

associated stratigraphic uncertainty can be quantified and 

leveraged for specifying the optimal next sampling 

location based on the theory of information entropy. The 

whole process can be repeated until the planned project 

budget is reached. In the following subsections, key 

components of the proposed framework are discussed in 

detail.  

 

2.1. Voronoi tessellation 

Voronoi tessellation is a plane partition algorithm that 

can divide a plane into a series of regions, i.e., V(P1), 

V(P2),…,V(Pn), and each region can be represented by a 

single point called “seed”. Figure 2 shows a partitioned 

plane using Voronoi tessellation. In total, the plane has 

eight Voronoi cells and seeds. Any point within a 

Voronoi region has a smaller Euclidean distance d to its 

seed than to any other Voronoi region. There are many 

algorithms that can be used to create a centroidal Voronoi 

tessellation (CVT), such as Lloyd algorithm (Lloyd 

1982).  

For geotechnical engineering applications, it is 

always preferred to assign more sampling points to areas 

with higher technical or economic importance. For 

instance, dense samples should be located within the 

building boundary as shown in Figure 2, where the 

ground is more susceptible to settlements due to vertical 

surcharge imposed by superstructures. To address this 

concern, the weighted centroidal Voronoi tessellation 

(WCVT) that assigns different weights (𝜔) to seeds of 

different Voronoi regions can be adopted. 

Mathematically, the dominance region of a weighted 

seed can be described as follows: 

𝑉(𝑃𝑖) = {𝒙 ∈ ℝ2| 
‖𝒙−𝒙𝑖‖

𝜔𝑖
<

‖𝒙−𝒙𝑗‖

𝜔𝑗
 𝑓𝑜𝑟 𝑗 = 1, … , 𝑁𝑝, 𝑗 ≠ 𝑖}(1) 

where 𝒙 denotes the coordinate of a point in space; 𝒙𝑖 

and 𝜔𝑖  represent the coordinate and weight associated 

with the i-th seed. As a first approximation, the 2D site 

can be divided into two discrete zones, i.e., major 

construction zone Ω𝑀  and ancillary construction zone 

Ω𝐴. The ratio for weights associated with Ω𝑀 and Ω𝐴 can 

be taken to be proportional to the investment or 

construction budget ratio. The budget ratio (BR) is 

defined as the ratio of the construction budgets for the 

areas Ω𝑀 and Ω𝐴: 

𝐵𝑅 =  
𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑎𝑗𝑜𝑟 𝑎𝑟𝑒𝑎

𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑛𝑐𝑖𝑙𝑙𝑎𝑟𝑦 𝑎𝑟𝑒𝑎
=

𝜔𝑀

𝜔𝑎
 (2) 

 

 
Figure 2. An illustration of Voronoi tessellation 

2.2. Machine learning of three-dimensional 

geological domain 

Once site-specific data are retrieved from the ground 

following the initial sampling plan discussed in 

subsection 2.1, 3D subsurface geological domains can be 

developed using a stochastic modelling method, i.e., IC-

XGBoost3D (Shi and Wang 2022). IC-XGBoost3D 

relies on prior geological knowledge reflected in a single 

training image and site-specific data for stochastic 

simulations. Figure 3 shows the key modelling procedure 

of IC-XGBoost3D. As shown in Figure 3a, the single 

training image and site-specific data are aligned with a 

3D geological domain. The training image reflects 

representative stratigraphic patterns at the site of interest, 



 

 

and developed geological cross-sections from nearby 

sites with similar geological settings can readily be taken 

as training images. Subsequently, the whole 3D 

geological domain can be divided into a series of 2D 

simulation slices. The simulation sequence is determined 

based on the principle that the current simulation slice 

has the maximum number of site-specific data. Following 

the simulation sequence, 2D simulation slices are 

developed. Any previously simulated slice is treated as 

additional site-specific data. After all the 2D simulation 

slices have been developed, a 3D geological domain Z 

can be obtained by assembling all the simulated 2D 

slices. By changing the random seed to generate multiple 

random 2D simulation sequences, it is possible to 

generate multiple 3D geological domains, i.e., Z1, Z2,…, 

Zn. Detailed implementation procedures can refer to Shi 

and Wang (2022). 

 
Figure 3. Development of 3D geological domain using IC-

XGBoost3D (modified from Shi et al. 2023) 

2.3. Uncertainty quantification 

Multiple geological domains can be generated 

following different random seeds, and the most probable 

prediction Zmp can be derived by assigning each spatial 

point with the soil category of the highest occurrence 

frequency. For illustrative examples where the ground 

truth geological domain 𝑍𝑇  is available, the prediction 

accuracy can be calculated as follows: 

𝐴𝑐𝑐3𝐷 =
∑ 𝑰[𝑍𝑇(𝒙𝑖

3𝐷) = 𝑍𝑚𝑝(𝒙𝑖
3𝐷)]

𝑁𝑋×𝑁𝑌×𝑁𝑍
𝑖=1

𝑁𝑋×𝑁𝑌×𝑁𝑍
  (3) 

where NX, NY, and NZ stand for the total number of voxels 

in the X, Y, and Z directions. Meanwhile, the stratigraphic 

uncertainty associated with Zmp can be quantified using 

the theory of information entropy. Assuming the 

occurrence probability of the i-th soil type at x is 𝑝𝑖 , the 

total entropy (H) at a given spatial location is expressed 

as follows: 

𝐻(𝒙) = − ∑ {𝑝𝑖 ∙ 𝑙𝑛
𝑁𝑐
𝑖 𝑝𝑖}    (4) 

where 𝑁𝑐 denotes the total number of soil categories at 

the site of interest. Areas with a large entropy value 

denotes a high level of stratigraphic uncertainty. 

 

 
(a) Generated training geological domain 

 
(b) Ground truth geological domain 

Figure 4. Simulated geological domains (modified from Shi et 

al. 2023)  

 

2.4. Smart determination of next sampling 

location 

Additional sampling locations should be placed in 

areas with relatively larger entropy values. As 

geotechnical site investigation always involves vertical 

line measurements (e.g., boreholes), it is worthwhile to 



 

 

integrate the calculated entropy values in Eq. (4) along 

the depth. Once a new measurement is retrieved from the 

ground, the total entropy at the selected location will 

reduce to zero. Therefore, the location with the maximum 

total entropy ∆𝑛𝑏+1in the 2D plan should be selected as 

the next sampling point 𝑛𝑏 + 1: 

 ∆𝑛𝑏+1=  𝐻(𝒙ℎ
2𝐷, 𝑛𝑏) − 𝐻(𝒙ℎ

2𝐷 , 𝑛𝑏 + 1 )  (5) 

where 𝑛𝑏  denotes the number of existing line 

measurements. 

 

3. Illustrative example 

Figure 4 shows the simulated training and ground 

truth geological domains. The boundaries separating 

different soil types are taken to follow gaussian 

distributions. For illustrative purposes, a 2D geological 

cross-section is taken from the training geological 

domain (see Figure 4a) at X = 50 as the single training 

image. Note that the training image shares the similar 

geological patterns as those of the ground truth 

geological domain in Figure 4b. As an illustration, the 

number of boreholes for the initial site investigation is set 

at 10. 

 

4. Results from the proposed method 

 

 

 

 

 

 



 

 

 

 
Figure 5. Comparison of different sampling strategies: (a) 

Sampling plan with near equal spacing at budget ratio (BR) = 

1.0; (b) Sampling plan with BR = 10; (c) Entropy colormap for 

BR = 1; (d) Entropy colormap for BR = 10; (e) Entropy 

colormap for major construction zone with BR = 1; (f) Entropy 

colormap for major construction zone with BR = 10; (g) 

Accuracy colormap for major construction zone with BR = 1; 

(h) Accuracy colormap for major construction zone with BR = 

10 
As an illustration, two budget ratios (BR), i.e., 1 and 

10, are considered in this study. Figure 5a shows the 

sampling plan with near equal spacing, which is 

essentially a special case (i.e., BR = 1.0) of the proposed 

method. As the total number of initial sampling points is 

10, the top row consists of 4 points with reduced spacing. 

In addition, Figure 5b shows the sampling plan with BR 

= 10, and four sampling points are assigned within the 

major construction zone. Figures 5c and 5d show the total 

entropy colormaps for BR = 1 and 10, respectively. At BR 

= 1, sampling points are distributed uniformly across the 

entire site. The corresponding accuracy (i.e., 89.1%) is 

slightly larger (i.e., 88.4%) than that at BR = 10, and the 

total entropy (i.e., 126280) is slightly smaller than that 

(i.e., 139520) at BR = 10. However, when only the major 

construction zone is considered, the total entropy from 

BR = 10 (see Figure 5e) is smaller than that at BR = 1 (see 

Figure 5f). This is as expected as four sampling points are 

assigned within the major construction zone at BR = 10. 

As a result, the prediction accuracy (i.e., compare with 

the ground truth geological domain) at BR = 10 (refer to 

Figure 5h) is about 83.3%, which is slightly larger than 

81.8% for BR = 1. It is also worth mentioning that the 

next optimal sampling point from Figures 5e and 5f are 

essentially coincident with locations of low prediction 

accuracy as shown in Figures 5g and 5h, which further 

demonstrates the effectiveness of the proposed method. 

 

5. Summary and conclusion 

A data-driven smart sampling strategy is proposed for 

multi-stage site investigation with full consideration of 

3D subsurface stratigraphic uncertainty and irregular site 

geometries. The strategy enables the flexible 

determination of initial sampling locations considering 

project-specific needs during the preliminary stage of site 

investigation using weighted centroidal Voronoi 

tessellation. The obtained site-specific data are then 

integrated with prior geological knowledge for spatial 

predictions of 3D subsurface geological domains with 

quantified stratigraphic uncertainty. Subsequently, the 

quantified uncertainty is adopted to determine the next 

optimal sampling location based on the principle of 

maximum entropy reduction. The performance of the 

proposed method is demonstrated through an illustrative 

example. Results indicate that the data-driven approach 

renders efficient sampling within a site with irregular 

plan geometry while taking full account of the 3D 

subsurface stratigraphic uncertainty. 
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