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Abstract: Multiple myeloma (MM) is a clonal cell cancer characterized by excessive cell

division of plasma cells in the bone marrow, which can then overcrowd healthy cells. As a

result, end organ damage to kidneys, bones, and the liver occurs. The worldwide incidence of

MM amounted to 160,000 cases in 2018 and 106,000 patients have succumbed to the disease.

MM is diagnosed relatively well by detecting M monoclonal protein produced from cancerous

cells, yet mortality rates remain high because there is a lack of a specific treatment. By

identifying upregulated genes found in malignant plasma cells, scientists can develop new and

stronger therapies tailored to potential driver genes. This study takes a novel machine learning

approach to identify driver genes of MM. A single-cell RNA sequencing dataset obtained from

Gene Expression Omnibus containing data from 29,367 plasma cells and 22,088 genes was

utilized in this study. This study evaluated the performance of three machine learning models:

Random Forest (RF), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN), with

RF achieving the highest accuracy of 95.61%.To name a few genes, the models identified

ANKRD28 and HLA-DPA1 as potential driver genes that have been cross-validated with

previous literature. Notably, the models identified RP5-1171I10.5–a gene not yet established to

be associated with multiple myeloma which shows potential to be further studied for research.

These genes show potential to be further studied for specific targeted genetic therapy.
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1. Introduction

1.1 Multiple Myeloma

Multiple Myeloma (MM) is a clonal plasma cell cancer characterized by excessive cell

proliferation and abnormal antibody formation. Overproduction of abnormal proteins crowds out

healthy cells and results in numerous health complications. Unchecked, MM ultimately leads to

end organ damage, renal dysfunction, hypercalcemia, bone disease, and peripheral neuropathy

(Albagoush et al., 2023). In the United States alone, MM prevalence continues to rise each year,

and it is estimated that 35,730 new cases and 12,590 deaths are expected to occur in 2023

(American Cancer Society). Despite the growing concern of MM deaths, survival rates continue

to remain low with only 59.8% of patients surviving within 5 years (American Cancer Society).

Researchers have indicated that risk factors such as obesity, chronic inflammation, and

radiation exposure increase the likelihood of developing the disease. On the molecular level,

MM is caused due to numerous genetic mutations, epigenetic modification, and abnormal

miRNA, however the chief cause remains unknown (Das et al., 2022). Genetic changes such as

trisomies and translocations of the immunoglobulin heavy chain locus on chromosome 14 are

primary abnormalities that occur in the first stage of MM progression. Changes in genetic

composition result in the formation of abnormal antibodies, such as the Myeloma monoclonal

protein (M protein) (Kyle et al., 2011). M protein is mainly responsible for overcrowding healthy

cells which results in organ damage. As a result, researchers have established the rise of M

monoclonal protein levels in the blood as the major indicator for MM progression. However, the

exact genes responsible for abnormal M protein production remains unknown.

Multiple myeloma progresses in four distinct stages. First, Normal Bone Marrow cells

(NBM) progress into Monoclonal Gammopathy of Undetermined Significance (MGUS). At this
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stage, M protein levels have not yet been detected in the blood. Instead, general serum

monoclonal protein level produced from abnormal plasma cells must reach a level above 3

gm/dL in the blood. Additionally, clonal bone marrow plasma cells below 10% of all plasma

cells and absence of end organ damage must be identified to qualify a patient to be in the MGUS

stage (Rajkumar, 2022). This stage is considered benign and health complications have not yet

occurred. There are no distinct biomarkers found in this stage for disease prognosis except for

increased levels of serum blood protein. Nonetheless, MGUS still displays clinical importance

since roughly 20% of all MGUS patients develop MM later on in life (Mateos et al., 2020).

MGUS cells eventually progress to the next stage, Smoldering Multiple Myeloma

(SMM). This stage is characterized by even higher levels of serum monoclonal protein and is

distinguished from MGUS by the now present M protein in the blood. To qualify for SMM, M

protein levels in the blood must exceed 3 gm/dL (Rajkumar, 2022). Concern begins at this stage

as roughly 10% of SMM patients develop MM within the first five years (Mateos et al., 2020).

SMM finally develops into the active Multiple Myeloma, the last stage of MM

progression. Clonal bone marrow plasma cells exceed 10% of all plasma cells and evidence of

end organ damage is identified in this stage (Michels et al., 2017).

1.2 Diagnosis and Treatment of Multiple Myeloma

When a patient is suspected to have a presence of M protein, a combination of tests are

run to measure serum blood protein levels. Tests such as the serum protein electrophoresis,

serum immunofixation, and serum FLC assay all measure M protein levels to identify if a patient

is in one of the stages of MM progression (Rajkumar, 2022). Despite diagnosis of MM being

relatively advanced, researchers have still yet to develop an advanced targeted therapy for MM.
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The main and most common treatment for MM is the use of proteasome inhibitors

(Multiple Myeloma Research Foundation). Common proteasome inhibitors such as bortezomib,

carfilzomib, and ixazomib are responsible for preventing proteasomes in the cell from breaking

down pro-apoptotic factors (Sharma and Preuss, 2022). Specifically, bortezomib reversibly binds

to the chymotrypsin subunit section of the 26S proteasome. Eventually, the buildup of

pro-apoptotic factors activates programmed cell death pathways in cancerous cells.

Although these treatments work to some degree in killing MM cells, they act generally

and are inefficient. Since they do not act to target specific metabolic pathways or genes

characteristic of MM cells, these drugs are ineffective in treating the cancer. As a result, MM

death rates have remained relatively the same over the past 30 years with no significant

breakthrough in treatment regimens (NIH; Figure 1).

MM death rates have only decreased from 3.8% in 1992 to 3.0% in 2020, while new

cases continue to rise. Even if this number seems small, the 5-year survival rate of MM (59.8%)

is still lower than other common cancers such as breast cancer (90.8%) (NIH). Additionally,
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proteasome inhibitors can cause dizziness, labored breathing, nausea, and numerous other side

effects (Sharma and Preuss, 2022). As a result, there is a need to develop new, targeted therapies

towards MM to improve survival rates and reduce adverse side effects.

1.3 Single Cell RNA Sequencing

Single-cell RNA sequencing (scRNA-seq) is a modern biotechnology which can be used

to identify differentially expressed genes when comparing two different cells. The technique

measures gene expression levels of thousands of genes in a single cell as whole integer values

with each count representing every time the gene is expressed. Observing the differences in

genetic expression for certain genes can provide valuable insight into which genes are

overexpressed or underexpressed in cancerous MM cells. Using this information, scientists can

then create targeted therapies which aim to control the expression of these genes.

scRNA-seq has shown potential to identify pivotal genes which cause cancer, as shown in

Sultana et al. (2023). This paper utilized scRNA-seq data to identify 12 biomarkers and genes for

non-small cell lung cancer such as MS4A1, CCL5, and GZMB. Furthermore, Ren et al. (2021)

poses as yet another example of the capability to identify metastasis genes using scRNA-seq.

The identification of the S100A4 gene expressed in tumor genes was found through scRNA-seq

and proved to play a role in metastasis in future research. Therefore, utilizing scRNA-seq shows

promising potential to identify specific genes that cause MM, which can ultimately provide a

direction for future targeted therapy.

1.4 Identifying Driver Genes to Create Targeted Treatments

Targeting specific driver genes has made it possible to create more effective treatments

for cancer. Chu et al. (2021) proposed the DKK1 gene to play a significant role in MM

proliferation. The DKK1 gene is responsible for producing the DKK1 protein, which is an
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inhibitor of the Wnt-β-Catenin pathway. The Wnt-β-Catenin pathway produces β-catenin, which

is a key tumor cell proliferation regulator. Jiang et al. (2022) researchers further into this gene for

its application in clinical therapy for MM. As a result of the discovery of DKK1 and its relation

to MM, new drugs called DKK1 inhibitors have been created.

1.5 Machine Learning vs Current Approach

The most common approach to identify genetic differences between cell types is using

the GEO2R program, which is a web tool that compares across groups and samples in the Gene

Expression Omnibus (GEO) dataset. GEO2R uses exclusively GEO datasets and limma R

packages to visualize, process, and perform statistical analyses. However, GEO2R does display

numerous drawbacks such as being slow to analyze large datasets with many samples or genes,

which is commonly characteristic of scRNA-seq datasets. There is a 10-minute cutoff for data

processing which can prevent scRNA-seq analysis. In addition, GEO2R shows difficulty in

analyzing raw or non-normalized data which limits the scope of what datasets can be used (U.S.

National Library of Medicine).

On the other hand, machine learning shows promising potential to surpass current

approaches in analyzing differentially expressed genes. Unlike GEO2R, machine learning

models can process and excel in their predictions on much larger datasets. Additionally, machine

learning models provide much more information in the features (Le et al., 2022). Machine

learning is capable of detecting patterns in scRNA-seq datasets, which are complex due to

thousands of genes being variables. This allows machine learning to potentially identify novel

genes. Utilizing machine learning models to analyze scRNA-seq data could be useful in

identifying novel genes that proliferate MM which have not been previously established in

current analysis techniques.
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1.6 Objectives

This project’s goals are threefold: to create machine learning models to correctly identify

the stage of MM progression a cell is in; identify signature genes for each MM stage; and to

potentially identify novel genes which have not been identified in previous literature.

2. Methodology

2.1 Dataset

scRNA-seq data was obtained from Gene Expression Omnibus created by Boiarsky et al.

2022. The dataset included RNA expression values from 29,387 plasma cells (9,329 NBM, 817

MGUS, 8,431 SMM, and 10,790 MM) taken from 26 patients in varying stages of MM

progression. Expression values of 22,088 genes from 4 different cell types (NBM, MGUS,

SMM, MM) were measured.

2.2 Pre-Processing

All genes that had no expression values were removed from the dataset. Then, the XIST

sex gene was removed as differential expression of this gene only results from gender, not

because of the presence of MM (Boiarsky et al., 2022). Next, highly expressed genes that are not

responsible for MM pathogenesis were removed. This included genes from the IGH, IGL, and

IGK loci, as they are already known to be highly expressed antibodies in abnormal cells but have

no importance in disease progression (Boiarsky et al., 2022). The dataset then was normalized by

taking the log 2 of every expression value to reduce skew in the data for genes that are naturally

expressed much more than others (Ilozumba et al., 2022). Log 2 normalization was chosen for

this dataset because it is commonly used in differentially expressed gene datasets (Bergemann

and Wilson, 2011). Highly variable genes were then selected using Scanpy because this study

focuses on only observing genes that are differentially expressed in cell types. Highly variable
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gene selection reduces the dimensionality of the dataset by removing genes with limited value

(Boiarsky et al., 2022). Finally, the gene expression values were scaled to prepare for principal

component analysis. Scaling standardizes the data by subtracting the mean from each respective

value and scaling that value to its unit (0.0-1.0) variance (Abd El-Haleem et al., 2022).

2.3 Principal Component Analysis and Scree Plot

Principal component analysis (PCA) was utilized in this study to reduce high

dimensionality scRNA-seq data (Figure 2). Because scRNA-seq data contains thousands of

genes, it will be hard for machine learning models to account for all of these variables when

making their classification decision. Therefore, PCA will

condense these genes into principal component clusters,

while still preserving as much information as possible. First,

all genes are inputted into a covariance matrix to measure the

relationship between every pair of genes. Next, eigenvectors

and eigenvalues are computed to create principal

components. Each principal component consists of genes

with a different weight in how important it is.

Principal components will then organize every

cell to a certain cluster based on their gene

expression values and find the notable genes

which are responsible for creating different clusters (Jolliffe and Cadima 2016). Principal

components were then inputted into machine learning models to determine which principal

component was the most important in differentiating between cell types.
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Too little principal components may remove too much information while having too

many can reduce model performance. To combat this issue, a scree plot was observed to

determine the amount of principal components to keep

(Figure 3). The scree plot maps out the proportion of

variance explained by each principal component. At the

point where explained variance levels off is the sufficient

amount of principal components to keep. It was found

that 30 principal components were sufficient for data

analysis. Principal components were then inputted in machine

learning models to differentiate between NBM, MGUS,

SMM, and MM cell types (Michie et al., 2021). Principal components will then be listed with

each gene ordered by most correlated to the cancer to least correlated.

2.4 Models

This study utilized 3 different machine learning models: Random Forest (RF), Support

Vector Machine (SVM), and K-Nearest Neighbors (KNN). Classification accuracy for each

model will be observed, and the most important principal component will be noted from each

model.

Random Forest (RF) is a machine learning model that employs ensemble learning

methods with a combination of decision trees fitted on randomly selected subsets of data

(Breiman, 2001). To improve predictive ability and control for overfitting, RF averages the

predictions from each decision tree to form its final prediction. This study utilized RF since

ensemble learning methods have proven to be very successful in classification problems using

gene expression data (Mahendran et al., 2020).
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Support Vector Machine (SVM) is a machine learning model that makes its predictions

by establishing a hyperplane (or decision boundary) that separates the data points from each

class. This hyperplane is developed to be the farthest away from the support vectors—data points

that are closest to other classes' data points—as possible. By projecting data points into a higher

dimensional space, a process called the kernel trick, SVM is able to effectively improve its

predictions (Huang et al., 2018). SVM was selected as a model as it has shown previous success

(98% accuracy) in the classification of colon cancer with a gene expression dataset (Guyon et al.,

2002).

K-Nearest Neighbors is a nonparametric learning algorithm in which the classification of

an object depends on the values of its neighbors. Each datapoint assumes that its neighbors are

indicators for its values and therefore weighs them more than distant values in its predictions

(dos Santos Freitas et al., 2022). KNN has been previously shown to be highly accurate when

tested on gene selection datasets (Mahendran et al., 2020).

2.5 Metrics

Classification metrics will determine how effective each model was in correctly

identifying the current stage of MM progression in a cell. Metrics represent the model prediction

out of all cell types in the dataset. For example, accuracy measures the amount of correct

predictions out of all 4 cell types, then divides by the total number of cells. Categorical

classification of true positives (TP), true negatives (TN), false positives (FP), false negatives

(FN), true positive rate (TPR), and true negative rate (TNR) were observed. Accuracy, balanced

accuracy, precision, recall, and F-1 score were the metrics included in this study to observe

model performance. 80% of each cell type in the dataset was used for training each of the models

while the other 20% was used for testing. Figure 4 displays the metrics in depth, along with the
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entire workflow of the methodology. Macro-averaged scores calculate the scores from each class

and take the unweighted mean of all classes. On the other hand, micro-averaged scores calculate

the scores globally across classes and adjust for unbalanced data.

2.6 Multicollinearity

Multicollinearity is when two or more independent variables show correlation with each

other, making it difficult to distinguish their independent influence (Voss, 2005).

Multicollinearity between identified driver genes would indicate that a change in expression

levels of one gene was the result of a change in expression levels of another gene, making it

unlikely that the gene expression levels changed due to MM. To ensure that the identified driver



11

genes were independent of each other, a multicollinearity test was run and the variance inflation

factor (VIF) of each gene was calculated. A VIF value of 1 indicates no correlation between

variables, and a VIF value of 10 or greater generally indicates multicollinearity (Kim, 2019).

Identified driver genes that showed multicollinearity were eliminated from this study’s analysis,

as a change in gene expression is likely not the result of MM.

3. Results

3.1 Metrics Results

Table 1 lists the metric scores for RF, SVM, and KNN. RF was the overall best

performing model, with the highest accuracy of 95.61%. RF outperformed the other two models

in accuracy, precision, micro-averaged recall, and micro-averaged F-1 score (See Table 1).

Scores are represented in decimal values and measure performance in each model in correctly

identifying cell type. It should be noted that all three models performed extremely similarly to

each other with accuracies differing by only 0.43%. Therefore, principal component importance

will observe all three models, instead of just the best performing one. All three models will be

observed to see which majority principal component was the most important.
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3.2 Confusion Matrix

Model predictions were summarized with confusion matrices as shown in Figure 5.

Highlighted blue boxes represent the model correctly identifying the right type of cell. All three

models performed the worst in identifying MGUS cells, with many cells misidentified as NBM

cells. However, it should be noted that there were significantly less MGUS cells in the dataset

compared to every other cell type.

3.3 Feature Importance

Models then were evaluated to see which principal component was the most important in

its classification decision. Each model used their respective algorithm to determine principal

component importance and is illustrated in Figure 6. Importance score is plotted against principal

components (PC) to compare between principal components. Note that 0 represents Principal

Component 1 (PC1).
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RF and SVM both determined that PC3 was the most important component in its

classification decision, while KNN determined it to be PC5. Therefore, genes in the two most

important components (PC3 and PC5) will be further discussed.

3.4 Genes

Listed in Table 2 are the top 5 most important genes in the first 9 principal components.

These genes were weighed the most in each principal component, with the first gene being the

most important. Only the first 9 principal components were used because the rest showed limited

importance. Bolded genes will be further discussed later.

PC1 PC2 PC3 (RF & SVM) PC4 PC5 (KNN)

GAPDH CST3 ANKRD28 LAG3 HLA-DPA1

RPL4 FRZB NFKBIA HBA2 HLA-DRB5

HNRNPA1 FCRLA TMSB4X HBA1 HLA-DRA

EEF2 CH17-224D4.2 H3F3B PTP4A3 HLA-DQA1

ITM2C WHSC1 CXCR4 LILRB4 HLA-DQA2
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PC6 PC7 PC8 PC9
RP5-1171I10.5 STMN1 AC233755.2 AZGP1

SNHG25 NUSAP1 STMN1 AC233755.2

CH17-224D4.2 TOP2A NTRK2 MAFB

CCL3 KIAA0101 NUSAP1 NTRK2

FGFR3 MKI67 TOP2A P2RX1

3.5 Multicollinearity

The results of the multicollinearity test are listed in Table 3. Genes with VIF scores above

10 were highlighted and will be excluded because their expression levels are due to other genes,

not MM itself. Only one gene, RPL4 (PC1) displayed a VIF above 10.

PC1 PC2 PC3 PC4 PC5
Genes VIF Genes VIF Genes VIF Genes VIF Genes VIF

GAPDH 3.87 CST3 3.10 ANKRD28 2.26 LAG3 3.47 HLA-DPA1 3.66

RPL4 15.03 FRZB 2.84 NFKBIA 1.99 HBA2 5.17 HLA-DRB5 4.31

HNRNPA1 6.83 FCRLA 1.77 TMSB4X 1.59 HBA1 2.92 HLA-DRA 8.23

EEF2 7.26 CH17-224D4.2 2.28 H3F3B 2.21 PTP4A3 2.32 HLA-DQA1 5.26

ITM2C 2.80 WHSC1 1.92 CXCR4 1.93 LILRB4 1.39 HLA-DQA2 4.70

GLTSCR2 6.46 NPM1 2.81 LMNA 1.70 NUDT12 1.947 HLA-DPB1 2.764

PC6 PC7 PC8 PC9
Genes VIF Genes VIF Genes VIF Genes VIF

RP5-1171I10.5 1.68 STMN1 2.74 AC233755.2 3.13 AZGP1 1.67

SNHG25 1.86 NUSAP1 2.46 STMN1 1.91 AC233755.2 2.58

CH17-224D4.2 1.23 TOP2A 2.61 NTRK2 1.87 MAFB 2.08

CCL3 1.17 KIAA0101 2.18 NUSAP1 2.40 NTRK2 1.86

FGFR3 1.47 MKI67 2.13 TOP2A 2.80 P2RX1 1.25

CD1D 1.73 TYMS 2.33 MAFB 1.97 CYP20A1 1.42
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4. Discussion

4.1 Design Choices

The overall design of this study aimed to develop a machine learning model to classify

MM cells and then to determine which genes were responsible for the classification decision.

MM was chosen because it is a prevalent cancer worldwide, with still a relatively low 5-year

survival rate compared to other cancers. Additionally, MM still lacks a specific treatment

regimen that targets genetic pathways characteristic of the cancer. Therefore, this study aimed to

identify genes that progress the cancer so scientists can further research these genes for targeted

treatment.

All of the models achieved above a 95% accuracy in classifying each of the 4 stages of

MM progression. Every model performed the best in identifying MM cells and the worst at

identifying MGUS cells. This study hypothesizes that the models were the worst in identifying

MGUS cells because their genetic composition was similar to NBM cells. This explains why

many MGUS cells were misidentified to be NBM. As shown in previous literature by Rajkumar

(2022), MGUS is still a benign stage in MM progression and M proteins are not present yet.

MGUS is the most similar stage to NBM so genetic differences may not be apparent.

4.2 Genes

All genes listed in the table are hypothesized to play a role in MM progression. Genes

were cross-validated in an extensive PubMed database search to determine if PCA and the

models worked correctly. If the gene was previously established in literature to be associated

with MM progression, it can help validate the possible genes that are implicated in progressing

MM, which can then be extended to novel genes found in this study.
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ANKRD28, the most important gene in PC3, which is also the most important PC

determined by both RF and SVM, has previously been established to be responsible for genetic

disorders when mutated (Kiyokawa E et al., 2009). ANKRD28 plays a role in cellular adhesion

and promotes migration which are two factors important in cancer proliferation. Furthermore,

ANKRD28 is found to be hypomethylated in MGUS cells as shown by Heuck et al. (2013).

Hypomethylation of the gene can be a possible explanation for why gene expression levels were

higher in cancerous cells compared to NBM cells. Although the exact function of ANKRD28 is

unclear, this gene still shows potential to be a promising indicator for progression and

identification of MGUS cells (Wu et al., 2023).

HLA-DPA1, the most important gene in PC5, which is the most important PC determined

by KNN, is responsible for hypoxia in MM when mutated (Yang et al., 2020). Yang et al. states

that this gene can be a potential indicator with prognostic values in multiple myeloma, which

needs to be further investigated.

Most notably, two genes listed in the table, RP5-1171I10.5 and CH17-224D4.2, were not

yet established to be associated with MM. RP5-1171I10.5 is responsible for the production of a

long non-coding RNA which is responsible for cell proliferation in breast cancer. This gene’s

role in breast cancer progression shows potential to also be important in other types of cancer

such as MM. Unfortunately, the function of the CH17-224D4.2 gene has not yet been reported in

PubMed so it will be excluded from the study.

4.3 Potential for application

All three models achieved a promising accuracy above 95%, which shows its potential to

be effective in diagnosing MM in plasma cells. These models can be implemented in clinical

studies to swiftly identify MM when given genetic expression data.
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More importantly, this study discovered the novel gene, RP5-1171I10.5, to be associated

with MM progression. Based on the models’ performance and cross-validation, this gene is

likely to play a role in MM. This gene should be further studied to create more specific targeted

genetic therapies for MM.

5. Limitations and Future Research

5.1 Limitations

One limitation of this study is that the genes identified by the machine learning models

may be associated with MM, but the data does not allow for a conclusion that change in the

expression of those genes causes MM. Therefore, this study was only able to identify potential

driver genes of MM that require further research.

Imbalances in the scRNA-seq dataset was another limitation in this study. MGUS had a

significantly lower number of samples compared to the other stages of MM progression, leading

to the machine learning models showing difficulty in classifying MGUS cells. Additionally, the

patients sampled in the dataset were mostly white; however, MM has shown to be around two to

three times as common in African American patients compared to non-Hispanic white patients

(Dong et al., 2022). Differentiations in genetics between races may have skewed the data and

resulted in identified genes that are not representative of the general population.

Lastly, pre-existing medical conditions in sampled patients could have led to changes in

the expression of certain genes that are not associated with MM, but instead that pre-existing

condition. Therefore, the gene expression values in the data could have been skewed, leading to

falsely identified genes.
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5.2 Future Applications and Research

This study only utilized three different machine learning models and the results showing

the trend of the most important principal components was unclear, as RF and SVM identified

PC3 as the most important while KNN identified PC5 as the most important. In the future, this

study could implement additional machine learning models such as CNN, LSTM, and

GNN—this would allow for the identification of a clearer trend in the most important principal

components. Additionally, the methodology used in this study could be applied to different types

of cancer or to different conditions that have scRNA-seq data.

A long-term goal of this research would be to conduct a sub-analysis of the patients

sampled in the dataset—patient characteristic and diagnostic factors were provided by Boiarsky

et al. (2022) in a supplementary data file. Assessing patient characteristics would allow this study

to analyze how factors such as age, race, sex, and ethnicity would impact the genes identified to

be associated with MM. Diagnostic factors such as if patients were treated during MGUS or

SMM, M protein levels, and days until a follow-up could be analyzed for associated with

changes in the expression levels of certain genes. Additionally, identified genes could be further

studied using model organisms such as mice. Gene biotechnology will be used to knockout or

manipulate each identified gene to observe its significance in cellular homeostasis. Eventually,

new therapeutics can be made which modify each specific identified gene back to its normal

expression levels.

6. Conclusion

The main objective of this study was to classify whether a cell is in a stage of MM, and to

then identify driver genes for MM. All models achieved above a 95% accuracy in identifying the

correct type of cell. Genes listed in the principal components were consistent with previous
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literature, which indicates that the models show promising potential to correctly identify driver

genes. RP5-1171I10.5 was a novel gene discovered in this study which has not yet been

established to be associated with MM. Based on its function in breast cancer, the function of

RP5-1171I10.5 needs to be further studied with its relation in MM. Ultimately, targeting driver

genes in therapies can improve survival rates and create a much better prognosis of MM.
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