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Summary. Accurately simulating the noise induced by typical flows of many technical appli-
cations is a challenging task requiring a trade-off between computational costs and the degree
of modeling used in the simulation. A method well suited for this is the Lattice Boltzmann
Method (LBM ). Especially advances in wall-modeled (WM ) large-eddy simulations (LES ) for
LBM enabled the application of this method to the field of high Reynolds number (Re) flows,
which are omnipresent. The interaction of the individual models (components) in the LBM
context needs to be further investigated to understand their influence on each other. Previous
research on that topic has explored parts of it. In this work, we summarize and analyze recent
studies of the group from a meta-perspective. From that, a broader overview and new insights
are gained, allowing for better combinations of state-of-the-art key components for WMLES in
high Re flows and to efficiently tailor them to the target case using the massively parallel LBM
solver Musubi.

1 INTRODUCTION

Many flows in technical applications are characterized by a high Reynolds number (Re). For
example, the flow around wind turbine blades typically exhibit a Re in the range of several
millions. At the same time, noise reduction in technical flows is increasingly important, as a
rising awareness of noise-induced health hazards drive the desire for less obtrusive technical
devices. In the case of wind turbines the flow-induced noise mainly originates from the outer
part of the rotor blades [1]. We can further identify the dominant humanly notable noise to
be emitted by the trailing edge. Aeroacoustic simulations can help to investigate the causes
and mechanisms of that noise, as done by Stahl [2], and thereby contribute to design noise
reduction strategies. Stahl investigated the mechanism of flow-induced noise generation at the
trailing edge with special consideration of its bluntness by means of experiments and simulations
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for two different Re using the Lattice Boltzmann Method (LBM ). These Re are in the order
of a million, which would result in a total of a trillion elements for a simulation where all
scales are resolved (DNS ). If we then keep in mind, that the computational costs scale with
Re and are dependent on the resolved scales, a DNS resolving all scales is neither feasible
nor economically viable. Thus, modeling is indispensable for these kind of applications. With
emerging advances in wall-modeled (WM ) large-eddy simulations (LES ) for LBM , a large range
of modeling options becomes available. The interaction of the individual models or components
in the LBM context needs to be further investigated to understand their influence on each other.
For a fair comparison, different state-of-the-art key components for WMLES -LBM simulations
of high Re flows were implemented in Musubi . For example: advanced collision schemes based
on stability enhancing strategies including regularization [3] and recursive regularization [4] in
hybrid [5] or projected [6] fashion as well as the promising collision scheme operating in cumulant
space [7, 8] were implemented. Their node-level performance was then investigated in [9] to
determine the potential for optimization to reduce the time-to-solution. Besides, the solvers
communication patterns were investigated [10] and the scalability was improved by using non-
blocking communication for health checks [11]. The aim of this work is to examine the interaction
of the components by analyzing different investigations [12–15] from a meta-perspective and to
tailor them to our target case of the flow around an airfoil with as little modeling as possible.

The paper is organized as follows: in Section 2, the LBM solver Musubi is presented. Sub-
section 2.1 gives a brief introduction to LBM and specifies the used components. The results
of several investigations [12–15] are discussed in Section 3. All the findings are summarized and
related to each other from a meta-persepctive to conclude next steps from that in Section 4.

2 LATTICE BOLTZMANN SOLVER MUSUBI

Musubi [16] is an open-source, multi-level parallel LBM solver maintained and extended by
DLR. It is part of the APES software framework, which offers pre- and post-processing tools
for simulations on large-scale parallel computing systems. The frameworks centerpiece is the
library TreElM [17]. It provides a basis for massively parallel mesh-based simulations. For that,
it uses an octree discretization in conjunction with the Morton [18] space-filling curve. Which
allows for a simple partitioning in MPI [19] parallel computations on distributed systems. The
mesh for these computations can be either created internally, for simple setups, or externally
using the frameworks mesh generator Seeder [20]. Due to the octree discretization, Seeder can
easily generate multi-level meshes. The interpolation between these different levels of resolution
is done in Musubi . In recent works, Musubi has been investigated and extended to support high
Re flow simulations [11–15,21,22].

2.1 Lattice Boltzmann Method

We provide a brief description of LBM with respect to the aspects discussed in this work. For
a detailed introduction, the reader is refered to the book of Krüger et al. [23]. LBM is based on
the Lattice Boltzmann equation. It simplifies the original Boltzmann equation by discretizing
it in space, time, and velocity space and can be written as:

fi (x+ ci∆t, t+∆t) = fi (x, t) + ∆t · Ωi(x, t). (1)
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fi is the discrete Probability Density Function (PDF) of particles streaming from one lattice
node x to an adjacent one x+ci∆t with a lattice velocity of ci during one time step ∆t. Thereby,
the directions to move in are restricted to the lattice. The nodes of the lattice result from the
velocity space discretization which is indicated by the lattice stencil DdQq. d is the number of
spatial dimensions and q is the number of discrete velocities ci. The most common ones for 3D
are the D3Q19 and D3Q27.

The collision operator Ωi(x, t) leads to a local redistribution of the PDFs, such that mass
and momentum are conserved. The oldest and simplest collision scheme is BGK, named after
its inventors Bhatnagar-Gross-Krook [24]:

ΩBGK
i = −ωi(fi − f eq), (2)

with f eq being the equilibrium PDF and ωi the relaxation frequency. The latter one is coupled
to the kinematic lattice viscosity via

ν = cs∆t(
1

ωi
− 1

2
). (3)

Depending on the number of relaxation frequencies, ranging from one up to 27 for all stencil
directions in 3D , different collision schemes are available. In this work, we mainly consider the
three collision schemes MRT [25], HRR-BGK [5] and parCUM [8] (parameterized Cumulant).
The collision schemes themselves reproduce the Navier-Stokes equations, but miss the energy
dissipation that would happen in turbulent flows on the subgrid scale. To overcome this and
enable the simulation of high Re flows with lower resolution, a turbulence modeling like LES
needs to be introduced. Such a model locally modifies the viscosity of the flow (νtot) by adding
an eddy-viscosity (νturb) to the physical one of the fluid (νphy):

νturb =
(
Cx∆x2

)
OP (4) νtot = νphy + νturb (5)

with ∆x being the spatial resolution, Cx a model constant and OP the model operator. Both,
Cx and OP are dependent on the chosen LES model. In addition to the aforementioned LES
models, a wall function can be applied to model boundary layers at the wall instead of resolving
them.

3 Review of Investigations

This section is dedicated to recent investigations [12–15] of state-of-the-art key components
for high Re that were indentified and implemented in Musubi . In general, MRT, HRR-BGK,
PRR-BGK and parCUM were used as collision schemes along with the D3Q27 stencil. As MRT
was found to be unstable with D3Q27 [12], this collision scheme was exceptionally used with the
D3Q19 stencil. Except for the parCUM collision scheme, which includes an implicit LES (ILES ),
they were combined with one of the three LES models: the Smagorinsky [26], Vreman [27] or
Wall-Adapting Local Eddy-viscosity (WALE) model [28]. The wall was either modeled by the
implicit Musker function [29], the implicit Reichardt function [30] or the explicit combination
of the Werner and Wengle [31] with the Schmitt [32] profile, called Power-Law profile.
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3.1 LES and Collision Scheme Investigations

Spinelli et al. [12] investigated different combinations of collision schemes and LES models for
the flow around a cylinder aiming to find the best results in terms of accuracy and performance.
They used the following components that are available in Musubi :

- Collision schemes: MRT, HRR-BGK, PRR-BGK and parCUM

- LES models: Smagorinsky with Van-Driest damping, Vreman and WALE

For their investigations, they used the quasi 3D cylinder test case with a diameter based
Reynolds number of 3900. The quality of the LES solution according to the LES quality in-
dex (LESQI ) of Celik et al. [33] was assessed. Details on the setup with local grid refinement
(multi-level) as well as the LESQI can be found in [12]. We briefly summarize and discuss their
three comparisons.
Comparison 1 – Influence of Collision Schemes In their first comparison, they compared
typical flow quantities against experimental data for the different collision schemes with Vreman
as fixed LES model and parCUM with its ILES . The best results compared to the DNS refer-
ence data were obtained with parCUM followed by the combinations of HRR-BGK-Vreman and
MRT-Vreman. PRR-BGK-Vreman failed to reproduce the Reynolds stresses of the experiment
and yielded unsatisfactory results. Therefore, it was excluded from the two following compar-
isons.
Comparison 2 – Influence of LES Models In their second comparison, they investigated
the impact of the different LES models on the solution and performance. For that, they used
HRR-BGK and MRT in conjunction with Smagorinsky, Vreman or WALE. HRR-BGK-Vreman
and MRT-WALE were shown to give good results compared to the reference data. However, the
results with HRR-BGK-Smagorinsky and HRR-BGK-WALE were not good. The authors have
identified the double usage of the velocity gradient as a reason for this. It is used in the collision
scheme itself as well as in the LES model. Further, they showed that MRT lacks dissipation.
As the WALE model is more dissipative than the Vreman, MRT-WALE is a better combination
to overcome this issue.
Comparison 3 – Quantitative Comparison of Characteristic Quantities In their third
comparison, they assessed the suitability of the best combinations of the first two comparisons
– HRR-BGK-Vreman and MRT-WALE – as well as of the parCUM (ILES ) to accurately pre-
dict the characteristic quantities of the test case. Again, the best results were obtained with
parCUM.
Performance Investigation Finally, they evaluated the performance of the different collision
schemes combined with the Vreman LES model, except for the parCUM (ILES ). In this investi-
gation a uniform mesh along with the following combinations were used: HRR-BGK-Vreman and
PRR-BGK-Vreman both with D3Q19 and D3Q27, MRT-Vreman with D3Q19 only and parCUM
with D3Q27 only. The parCUM collision scheme with its ILES was shown to be both, the best
in terms of accuracy and compuational cost, followed by the combination of HRR-BGK-Vreman
and the one of MRT-WALE. MRT with D3Q19 was slower than the HRR-BGK counterpart.
The data locality of parCUM makes it fast. Different to that, HRR-BGK, PRR-BGK as well
as all the LES models make use of the velocity gradient. For the calculation of it, they need to
access non-local data, namely of the neighbors, which is more costly.
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3.2 WMLES and Collision Scheme Investigations

The components previously discussed in Subsection 3.1, namely collision schemes and LES
models, were now extended by using wall functions. In the corresponding publication, Spinelli et
al. [13] aimed for a parametric investigation of the most common collision schemes, LES models
and wall functions using the bi-periodic turbulent channel flow (TCF ). The TCF is a well-known
and well-documented canonical test case for wall-bounded flows [34, 35]. In this case, the flow
was induced by an external force [36, 37]. The results were compared against DNS reference
data of [35], amongst other by determining the relative L2-norm. The setup for the test case is
described in detail in [13]. For the sake of completeness, the applied components are listed as:

- Collision schemes: MRT, HRR-BGK and parCUM

- LES models: Smagorinsky with Van-Driest damping, Vreman and WALE

- Wall functions: Musker, Power-Law and Reichardt

The same components as in [12] were used except for the PRR-BGK collision scheme (un-
satisfactory results) and extended by the wall functions. As before, the parCUM was used with
its ILES only. In general, the D3Q27 stencil was used, except for MRT (see Section 3). In a
total of four comparisons, Spinelli et al. iteratively examined the suitability of each component
by changing one at a time.
Comparison 1 – Influence of Domain Size In the first comparison, they empirically ana-
lyzed the effects of the domain size on the normalized velocity profiles as well as the normal-
ized Reynolds stresses for three different resolutions and a fixed combination of MRT-Vreman-
Musker. For the smallest domain size and the coarsest resolution, they observed fluctuations in
the normalized Reynolds stress. But these got mitigated by increasing the resolution. Thus, the
smallest domain size was found to be a compromise between accuracy and computational costs.
It was then used for further comparisons.
Comparison 2 – Influence of Wall Functions In the second comparison, they investigated
the impact of the different wall functions on performance and accuracy for a fixed combination
of MRT-Vreman. All wall functions were shown to have a linear convergence order [13, Figure
10 on p. 15]. In terms of accuracy, Musker yielded good results for all three resolutions. In
contrast to that, Power-Law was shown to be unsuitable if the resolution lead to the first cell
being located in the buffer layer. Although the Power-Law function was the only explicit one,
the implicit Reichardt function was cheaper. The computational cost of the Musker function
was only slightly higher than the Power-Law function, making the latter one the most expensive
ones. Nevertheless, Musker was identified to be a good compromise between computational cost
and accuracy for all resolutions. Thus, it was used for the following investigation of different
LES models and collision schemes.
Comparison 3 – Influence of LES Models In the third comparison, Spinelli et al. inves-
tigated the effect of the LES models for a fixed combination of MRT-Musker. The accuracy
obtained with WALE was slightly better at the wall such that it resulted in the following order
in terms of accuracy: WALE, Vreman and Smagorinsky. In terms of computational cost, the
order looked alike: Vreman, Smagorinsky, WALE, with Vreman being the cheapest. Based on
these two rankings, the authors concluded to prefer Vreman. They also stated [13, p. 20]’[...] on
average the Vreman model is 10% computationally cheaper than the WALE model.’
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Comparison 4 – Influence of Collision Schemes In the fourth comparison, they inves-
tigated the influence of the collision scheme on computational cost and accuracy for a fixed
combination of Vreman-Musker (except for parCUM due to its ILES ). The best results in terms
of accuracy were obtained by parCUM, except for the middle resolution. For that one, MRT-
Vreman-Musker yielded better results. HRR-BGK was observed to severely under-predict the
peaks of the profiles as well as being unable to match the DNS data for the two coarser resolu-
tions. In terms of computational cost, HRR-BGK was again the worst. MRT was the cheapest.
Although it was used with Vreman-Musker it was cheaper than parCUM with that combination.
Overall, in terms of both, accuracy and performance, the parCUM-Musker combination (ILES )
outperformed the other combinations. The HRR-BGK collision scheme failed to reproduce the
peaks as well as the trends of the DNS reference data in most cases.

3.3 Influence of Blending Parameter σ of HRR-BGK on WMLES

While HRR-BGK delivered suboptimal results independent of the combination it was used
to run the TCF test case (see Subsection 3.2), the ones with HRR-BGK-Vreman for the flow
around a cylinder (see Subsection 3.1) were accurate. In order to assess the reasons for that,
the TCF test case with Reτ = 1000 as in the investigation of Subsection 3.2 was used. Based
on the previous findings of HRR-BGK-Vreman in Subsection 3.1 and of Vreman-Musker in Sub-
section 3.2 being good combinations plus the fact, that Vreman is the computationally cheapest
LES model, the combination of HRR-BGK-Vreman-Musker was used for the next investiga-
tion. In that investigation, Spinelli and Gericke [14] varied the blending parameter σ between
[0.9, 1.0]. In all the previous investigations it was fixed to 0.98 as recommended in literature [5].
HRR-BGK was further enhanced by utilizing a correction term as proposed by Feng [38] and
employing the D3Q19 as well as the D3Q27 stencil. For a better overview, the components are
listed in the following:

- Collision scheme: HRR-BGK and HRR-BGK-Correction

- LES model: Vreman

- Wall function: Musker

- Blending parameter σ: [0.9, ..., 1.0]

They showed that HRR-BGK was still under-predicting the peaks independent of the ap-
plied stencil. Furthermore, they showed that the HRR-BGK-Vreman-Musker combination with
D3Q19 was more accurate for the two lowest resolutions. For these two resolutions, the first cell
(y+1 ) at the wall was located in the buffer layer (y+1 = 25) or in the logarithmic layer y+1 = 50.
On the other hand, the combination with D3Q27 gave more accurate results for the highest res-
olution. In this case, the first cell was located in the viscous sub-layer (y+1 = 12.5). The authors
also stated, that [14, p. 3] ’[...] the correction term improve[d] the accuracy of the results on
average by 0.1%. For few cases [..., it] worsened.’. Regarding the choice of σ, they found that
it was dependent on the chosen stencil: for D3Q19-HRR-BGK-Vreman-Musker, the best results
were obtained with σ = 0.998. For D3Q27-HRR-BGK-Vreman-Musker, the best results were
obtained with σ = 1.0. For the latter one, the HRR-BGK scheme corresponds to the Recursive
Regularized BGK (RR-BGK) scheme proposed by Malaspinas [37].
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3.4 Influence of Blending Parameter σ of HRR-BGK on Selection of LES and WM

Gericke et al. [15] extended the previous research by analyzing the influence of σ of HRR-BGK
with and without correction term on the selection of LES model and the wall function along
with its performance impact. They used the most promising ones from previous studies [12,13]
discussed in Subsection 3.1 and Subsection 3.2. To account for the entire range of σ-values, they
extended the previous range of [14] by 0.0 and 0.5. Again, the used components are listed for a
better overview:

- Collision scheme: HRR-BGK and HRR-BGK-Correction

- LES models: Vreman and WALE

- Wall functions: Musker and Power-Law

- Blending parameter σ: [0.0, 0.5, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0]

For σ = 0.0, the collision scheme corresponds to the PRR-BGK one discussed in [12], for
σ = 1.0 to the RR-BGK one of Malaspinas [37]. In their investigation, Gericke et al. compared
their results to those of Vreman-Musker of [14] as well as the DNS reference data of Lee and
Moser [35]. They stated that the choice of σ depends on the wall function. For Vreman-Musker
the best results were obtained with σ = 0.9, for Vreman-Power-Law with σ = 0.94. As in the
previous investigation (see Subsection 3.3), they observed no benefit, but higher computational
costs, if the correction term was used.

3.5 Performance Investigations and Operational Parameters

In the context ofMusubi , also other performance investigations were done: they were not only
helpful to identify and improve performance bottlenecks like the communication patterns [10,11],
but also to determine the node-level performance of the kernels (without LES and WM ) [9].
In this investigation it was shown that even with the more expensive D3Q27 stencil, RR-BGK
is cheaper than the cheapest HRR-BGK (obtained with D3Q19). Besides, the best relation of
OpenMP threads to MPI processes was determined by means of intra- and inter-node perfor-
mance measurements [21]. All these information were then combined to determine the opera-
tional parameters for the airfoil target case. This, as well as the setup of it were extensively
discussed in [22].

4 Insights from the Meta-Perspective: Conclusion and Next Steps

After discussing the details of several investigations in Section 3, we can now step back and
look at those findings from a higher-level. This helps us to recognize similarities and differences,
but also patterns and underlying principles. Therefore, this section is dedicated to the meta-
perspective. We first summarize the four main investigations, before the best combinations are
collected in an overview table.

The investigations for combinations of LES and collision schemes in Subsection 3.1 revealed
that the combination HRR-BGK-Vreman gave accurate results but not HRR-BGK-WALE.
MRT-WALE in turn was better than MRT-Vreman. The reason for this was found to be a
slight difference in the dissipative behaviour of the two LES models and the the lack of it in
MRT (see [12, Figure 7, p. 32]). This emphasizes the necessity to investigate the interaction of
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different components and their characteristics to consider their individual needs when combining
them.

The investigations for combinations of WMLES and collision schemes in Subsection 3.2
showed that overall, in terms of both, accuracy and computational cost, the parCUM-Musker
combination (ILES ) outperformed the other combinations. If a LES model is needed, the best
compromise in terms of accuracy and computational cost was found to be Vreman-Musker. The
HRR-BGK collision schemes failed to reproduce the peaks as well as the trends of the DNS
reference data in most cases. As the authors used the suggested blending parameter of σ = 0.98
as in [5], they attributed the reason for this failure to the recursive regularization. In that,
Hermite coefficients of an order higher than two are neglected. While that procedure was stated
to be negligible for high Re in [39], the authors suspected that it was not negligible for this test
case.

The investigations of the influence of σ on the results obtained with Vreman-Musker in Sub-
section 3.3 revealed that adjusting σ dependent on the stencil as well as the resolution improved
the accuracy. With respect to performance and keeping in mind that for application runs, we
do not want to employ the highest resolution they used, there is no benefit by using the more
expensive D3Q27 stencil or the correction term for this test case. Besides, this investigation re-
vealed the cause of the previous problem: the failure to reproduce the peaks and general trends
was due to the choice of σ, which influences the dissipation of the HRR-BGK scheme. As these
investigations were conducted for a fixed WMLES combination, further comparisons were made.

The investigations of the influence of σ on the selection of LES and WM in Subsection 3.4
showed that the choice of σ also depends on the wall function. The best combination was
the D3Q19-Vreman-Power-Law-HRR-BGK combination with a σ value of 0.9 and without the
correction term independent of the resolution. It was shown that there is no large difference
in terms of accuracy if Vreman or WALE were used, but in terms of computional cost. The
last observation is different to the one of the first investigation. There, the results with HRR-
BGK-WALE were unsatisfactory, emphasizing the dependence of the components on the test
case.

All the presented findings are summarized in Table 1 and Table 2. They are presented in
such a way that the differences quickly become apparent.

Table 1: Overview of reviewed publications, test cases and systems used for that.

ID Publication Test Case System Details

#1 Spinelli et al. [12]
Cylinder

CARA Subsec. 3.1
Re = 3900

#2 Spinelli et al. [13]
Turbulent channel flow

CARA Subsec. 3.2
Reτ = 1000

#3 Spinelli & Gericke [14]
Turbulent channel flow

CARO Subsec. 3.3
Reτ = 1000

#4 Gericke et al. [15]
Turbulent channel flow

CARO Subsec. 3.4
Reτ = 1000

In Table 2 a combination is obtained via all components with the same sub- or superscript.
For investigation #2, MRT is part of the second and third best combination in terms of accu-
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Table 2: Overview of investigations as listed in Table 1 along with the used components. (If a component
is used, it is marked via x, otherwise via −. The stencil is indicated via ◦ (D3Q19) or ∆ (D3Q27). The
best σ value is given on the left side of the stencil marker (e.g. 0.98∆). For investigation #1, PRR-
BGK was removed from the table due to the unsatisfactory results. For investigation #3 and #4, RR is
employed via HRR σ = 1.0. #4 is splitted into two rows for better readability. The best combinations are
highlighted by the same number in the sub- or superscript per ID. Thereby, the number indicates the rank,
with subscripts for a ranking in terms of compuational cost and superscripts in terms of accuracy, e.g.
for #1 the second best combination in terms of accuracy (superscript 2) is D3Q19-HRR-BGK-Vreman
with σ = 0.98.
Details on the combinations and abbreviations – Sma (Smagorinsky), Vre (Vreman), WAL (WALE), Mus
(Musker), PwL (Power-Law) and Rei (Reichardt) – can be found in the sections mentioned inTable 1.

ID
Collision Scheme LES Wall Function

RR HRR MRT parCUM Sma Vre WAL Mus PwL Rei

#1 − 0.98∆2
2 ◦33 ∆1

1 x x223 x3 − − −
#2 − 0.98∆ ◦2323 ∆1

1 x x32 x23 x123123 x x
#3 σ = 1.0 0.998◦,1.0∆ − − − x − − − −

#4 σ = 1.0
0.9◦,∆ − − − x x x − −
0.94◦,∆ − − − x x − x −

racy (superscript 2 & 3). The full combination for the second best in terms of computational
cost according to the table is MRT-Vreman-Musker (#2, subscript 2). Like that, we can easily
determine the best combinations in terms of accuracy and computational cost for each test case
and investigation discussed in Section 3. From the meta-perspective, looking at all these inves-
tigations again, it can be seen that parCUM with its ILES outperforms the other combinations
in terms of accuracy and computational cost. Further, it can be seen that Smagorinsky even
in its improved version with Van-Driest damping never ends up in the top three combinations
(no sub- or superscript). For #3, there are two different sigma values indicating their depends
on the stencil. The best result for D3Q19-Vreman-Musker was obtained with σ = 0.998, while
for D3Q27-Vreman-Musker it was σ = 1.0. As discussed in Subsection 3.3, for σ = 1.0 HRR-
BGK corresponds to the RR-BGK scheme. From the node-level measurements of Wendler et
al. [9], we also know that the RR-BGK performs better and faster than the HRR-BGK collision
scheme. With this information in mind, we can choose the combination more wisely. What
we can also see from the table is the fact that the choice of σ for investigation #4 depends
on the wall function only. And finally, the table nicely highlights the familar dilemma: cost
or accuracy. For investigation #2 in terms of computational cost for example, the combination
MRT-Vreman-Musker is better (subscript 2) than the MRT-WALE-Musker (subscript 3). But in
terms of accuracy (superscripts), it is exactly the other way round. The table provides a fairly
comprehensive and clear presentation of four different studies at a glance. It also highlights
the added value of looking at several studies from a meta-perspective.
Conclusion and Next Steps
The analysis of several investigations from a meta-perspective underlines the importance of
knowing and taking the characteristics of components into account. As the analysis reveals it is
important to utilize the correct combination of components to achieve optimal results. parCUM
stands out with both good results and good performance. One reason for the latter is its ILES
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so that the usage of a LES model is unnecessary. Accordingly, computational resources can be
saved. However, the assumption for the target test case is that with a high Re of 1.2 million,
a LES model will also be necessary for parCUM. For this reason, parCUM will be combined
with different LES models in future studies and evaluated in terms of computational costs and
accuracy. Up to now, the investigations with HRR-BGK and its blending parameter were con-
ducted for flat walls. To enable a more robust validation of the findings in Subsection 3.4, future
work should include additional test cases: e.g. the flow around a cylinder as in Subsection 3.1
or our target case of the flow around an airfoil. The results can then be used to supplement the
compact overview of all the studies introduced throuhgout this work in Table 1 and Table 2.
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Düren: Shaker Verlag, 2023.

[3] J. Latt and B. Chopard, “Lattice Boltzmann Method with regularized non-equilibrium
distribution functions,” Physics. Flu-Dym, 2005.

[4] O. Malaspinas, “Increasing stability and accuracy of the Lattice Boltzmann scheme: recur-
sivity and regularization,” ArXiv e-prints, 2015.

[5] J. Jacob, O. Malaspinas, and P. Sagaut, “A new hybrid recursive regularised Bhatna-
gar–Gross–Krook collision model for Lattice Boltzmann Method-based large eddy simula-
tion,” JOT, vol. 19, no. 11-12, pp. 1051–1076, 2018.

[6] C. Coreixas, High-order extension of the recursive regularized Lattice Boltzmann method.
PhD thesis, Institut National Polytechnique de Toulouse, 2018.

[7] M. Geier, M. Schönherr, A. Pasquali, and M. Krafczyk, “The cumulant Lattice Boltzmann
equation in three dimensions: Theory and validation,” COMPUT MATH APPL, vol. 70,
pp. 507–547, 2015.

[8] M. Geier, A. Pasquali, and M. Schönherr, “Parametrization of the cumulant Lattice Boltz-
mann Method for fourth order accurate diffusion part I: Derivation and validation,” JCP,
vol. 348, pp. 862–888, 2017.

[9] J. Wendler, J. Gericke, M. Cristofaro, N. Ebrahimi Pour, and I. Huismann, “Accelerating
the FlowSimulator: Node-level performance analysis of high-performance CFD solvers using
LIKWID.” IPTW2023. (Accept., in press).
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