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Summary. This paper reports advancements in the unstructured conservative level-set (UCLS) method
for simulating two-phase flows with complex interfacial physics. The developed framework within the
UCLS method addresses interfacial transport processes, including heat and mass transfer, variable sur-
face tension, and liquid-vapor phase change. The transport equations are discretized using the finite-
volume method on three-dimensional collocated unstructured meshes. The UCLS method is utilized
for interface capturing, while a multiple marker approach prevents numerical coalescence in bubbles
and droplets. The fractional-step projection method solves the pressure-velocity coupling in the mo-
mentum transport equation. Unstructured flux-limiter schemes approximate the convective term, and
the central difference scheme calculates the diffusive term. Verifications and validations focus on the
thermocapillary migration of droplets using fixed meshes with mixed control volumes and hexahdral
adaptive unstructured collocated meshes.

1 INTRODUCTION

Interfacial transport phenomena, such as heat and mass transfer, thermocapillarity, and liquid-vapor
phase changes, are prevalent in natural and industrial applications. These phenomena are critical in vari-
ous engineering systems, including power and refrigeration cycles, petroleum and chemical processing,
internal combustion engines, and sediment and pollutant transport in aquatic environments. In these sys-
tems, carrier fluids often transport bubbles or droplets of a dispersed phase. The design, optimization,
and operation of such multiphase systems require a thorough understanding of the fundamental princi-
ples governing momentum, energy, and mass transport processes in individual bubbles and droplets and
within swarms of fluid particles.

Transport phenomena in two-phase flows have traditionally been researched using experimental meth-
ods, often limited by optical access constraints, and theoretical methods that provide analytical solutions
[27] based on simplified mathematical models. However, with the increasing computational power of
supercomputers, numerical and computational methods have been empowered [49, 63]. In this sense,
various techniques have been developed for Direct Numerical Simulation (DNS) of two-phase flows,
classified according to the advection scheme used to track the fluid interface. Notable examples include
the Volume of Fluid (VoF) method [36, 63, 49], the level-set (LS) method [48, 57], the coupled VoF-LS
method [56, 55, 9], the conservative level-set (CLS) method [47, 7, 13, 19, 21], and the front-tracking
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(FT) method [62]. While these methods share a common conceptual foundation, their numerical imple-
mentations on structured or unstructured meshes can differ significantly [13, 9, 8, 7].

Further efforts have extended DNS methods for complex interfacial physics. For instance, concerning
two-phase flows with variable surface tension, [11, 15, 17] introduced the UCLS method for thermocap-
illary migration of droplets, [45, 44] reported DNS of thermocapillary migration of droplets using the
FT method, [42] has performed DNS of thermal Marangoni migration using the VoF method, [25] re-
searched thermocapillary motion of fluid particles using the LS method. On the other hand, numerical
methods for liquid-vapour phase change have been extended for VoF [64, 65, 43], LS [54, 53], hybrid LS
and ghost fluid [34, 60], FT [37, 32, 31, 50], unstructured CLS [12, 18], coupled VoF-LS [46, 61, 40].
Furthermore, extensions of interface capturing methods to interfacial mass transfer are reported for single
bubbles [29, 23, 22, 28, 13, 21] and bubble swarms [1, 52, 39, 13, 4, 19, 13, 16, 21].

Most proposed methods for interface capturing are designed on structured and Cartesian meshes.
Therefore, further efforts must be made to develop numerical methods for two-phase flow with complex
interfacial physics on fixed and adaptive unstructured meshes. This work reports systematic advances in
the development of numerical methods for two-phase flow with interfacial heat and mass transfer in the
framework of the UCLS method proposed by Balcazar et al. [13, 11, 7, 13, 16, 21], on fixed and adaptive
collocated unstructured meshes. This paper is organized as follows: Section 2 presents the mathemat-
ical formulation and the numerical methods. Verifications, validations and numerical experiments are
presented in Section 3. Conclusions are reported in Section 4.

2 MATHEMATICAL FORMULATION AND NUMERICAL METHODS

2.1 Incompressible two-phase flow

The one-fluid formulation [63, 49] for incompressible two phase flow is written as follows:

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · (µ (∇v)) +∇ ·

(
µ(∇v)T

)
+ (ρ− ρ0)g + fσ, (1)

∇ · v = 0, (2)

where v is the velocity field, p is the pressure, ρ is the fluid density, µ is the dynamic viscosity, g is the
gravitational acceleration, fσ is the surface tension force per unit volume concentrated on the interface
(Γ), δΓ is the Dirac delta function concentrated at Γ. Physical properties (β) are defined as follows:

β = βcHc + βdHd, β = {ρ, µ, ...} (3)

Hc denotes the Heaviside step function, equal to one at Ωc and zero elsewhere. Hd = 1−Hc. Subscripts
d and c denote the continuous phase (Ωd) and dispersed phase (Ωc), respectively. For cases with periodic
boundary conditions in the vertical direction (parallel to g), ρ0 is defined as ρ0 = V −1

Ω

∫
Ω (ρdHd + ρcHc) dV

[13, 6, 8, 21]. Otherwise, ρ0 = 0.

2.2 Multi-marker UCLS method

The unstructured conservative level-set (UCLS) method proposed by Balcazar et al.[13, 7] performs
interface capturing on three-dimensional unstructured meshes. On the other hand, the multiple marker
UCLS approach introduced in Balcazar et al.[13, 4, 6, 8, 11] circumvents the numerical coalescence of
fluid particles. In this framework, each marker is a level-set function [13, 11, 7], ϕi = 0.5 (tanh (di/(2ε)) + 1),
where di is a signed distance function [48, 58]. Furthermore, ε is a parameter that sets the interface
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thickness, i.e., at the cell ΩP , εP = 0.5(hP )
α, α = 0.9 unless otherwise stated, hP is the local grid size

[13, 11, 7, 21]. The ith interface advection equation is solved in conservative form:

∂ϕi
∂t

+∇ · (ϕiv) = 0, i = {1, 2, ..., Nm}. (4)

where Nm denotes the number of level-set markers, here equivalent to the number of fluid particles
Nm = Nd. The following unstructured re-initialization equation [13, 11, 7, 21] is solved to maintain a
constant interface thickness:

∂ϕi
∂τ

+∇ ·
(
ϕi(1− ϕi)n0

i

)
= ∇ · (ε∇ϕi) , i = {1, 2, ..., Nm}. (5)

Eq.(5) is advanced in pseudo-time τ up to the steady-state, n0
i is the interface normal unit vector at τ = 0.

Interface normal vectors (ni) and curvatures κi, are calculated as ni = ∇ϕi/||∇ϕi||, κi = −∇ · ni

[13, 8, 7, 21].

2.3 Energy equation

For thermocapillary migration of droplets, the temperature field (T (x, t)) evolves according to the
following energy transport equation [11]:

ρcp

(
∂T

∂t
+∇ · (vT )

)
= ∇ · (λ∇T ), (6)

where cp = cp,dHd + cp,cHc is the specific heat capacity, and λ = λdHd + λcHc is the thermal conduc-
tivity.

2.4 Surface tension and regularization of physical properties

Surface tension force (fσ, Eq.(1)) is calculated with the Continuous Surface Force (CSF) model [24],
extended to the multi-marker UCLS method [8, 11, 6, 13, 15]:

fσ =

Nm∑
i=1

(f(n)σ,i + f(t)σ,i), f(n)σ,i = σκi∇ϕi, f(t)σ,i = (∇σ − ni(ni · ∇σ))||∇ϕi||, (7)

where f(n)σ,i is the normal component of the surface tension force, and f(t)σ,i is tangential to the interface,
i.e., the so-called Marangoni force [30]. Furthermore, without surfactants, σ = σ(T ) is the surface
tension coefficient with T defined as the temperature. A linear equation of state σ = σ0 + σT (T − T0),
σ0 = σ(T0) > 0 and σT < 0, is used unless otherwise stated.

Here, δsΓ,i =||∇ϕi|| is the regularized Dirac delta function concentrated at the interface [21, 15, 13, 7,
6]. Concerning the regularization of physical properties,Hc andHd (Eq. (3)), are regularized by a global
level-set function ϕ = min{ϕ1, ..., ϕnd

} [8, 21, 15, 13], e.g., Hs
d = 1 − ϕ and Hs

c = ϕ if 0 < ϕ ≤ 0.5
for Ωd, and 0.5 < ϕ ≤ 1 for Ωc. Alternatively, if 0 < ϕ ≤ 0.5 for Ωc, and 0.5 < ϕ ≤ 1 for Ωd, then
Hd = ϕ and Hc = 1 − ϕ, whereas ϕ = max{ϕ1, ..., ϕnd

} [13, 8, 7, 21]. For thermocapillary migration
of droplets, physical properties are regularized as proposed in [11].
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Transport equation Convective term β ψ

Eq.(1) ∇ · (ρvi v) ρ vi
Eq.(4) ∇ · (ϕ v) 1 ϕ
Eq.(6) ∇ · (T v) 1 T

Table 1: Convective term of transport equations, vi refers to the Cartesian components of v.

2.5 Numerical methods

The finite-volume method is used for discretization of transport equations on 3D collocated unstruc-
tured meshes [13, 7, 21]. The convective term (Table 1) is explicitly computed by approximating the
fluxes at cell faces with unstructured flux-limiter schemes, proposed by Balcazar et al.[13, 7, 20]. In-
deed, a general approximation of the convective term in the cell ΩP is written as follows:

(∇ · βψv)P = V −1
P

∑
f

βfψf (vf · Af ), (8)

where VP is the volume of ΩP , sub-index f denotes the cell-faces, Af = ||Af ||ef is the area vector,
ef is a unit vector perpendicular to the face f pointing outside the cell ΩP . Furthermore, ψf = ψCp +
0.5L(θf )(ψDp − ψCp), where L(θf ) is the flux-limiter function, θf = (ψCp − ψUp)/(ψDp − ψCp),
sub-index Cp denotes the upwind point, sub-index Up refers to the far-upwind point, and sub-index Dp

refers to the downwind point, as proposed in the framework of the UCLS method [13]. Table 1 outlines
the definitions of β and ψ. Some of the flux-limiter functions [59, 33, 35, 41, 38] implemented on the
unstructured multiphase solver [21, 15, 13, 7, 6] are summarized as follows:

L(θf ) ≡



max{0,min{2θf , 1},min{2, θf}} SUPERBEE,

max{0,min{2θf , (2/3) θf + (1/3), 2}} KOREN,

max{0,min{4θf , 0.75 + 0.25θf , 2}} SMART,

(θf+|θf |)/(1+|θf |) VANLEER,

minmod{1, θf} MINMOD,

0 UPWIND,

1 CD.

(9)

The SUPERBEE flux-limiter funtion is used unless otherwise stated. On the other hand, the compressive
term of the unstructured re-initialization equation (Eq. (5)) [7, 21, 13, 8], is discretized at the cell ΩP as
follows [21, 13]: (∇ · ϕi(1 − ϕi)n0

i )P = 1
VP

∑
f (ϕi(1 − ϕi))fn0

i,f · Af , where n0
i,f and (ϕi(1 − ϕi))f

are linearly interpolated. The diffusive term of transport equations are centrally differenced [13]. Gradi-
ents are computed at cell centroids through the weighted least-squares method [21, 13, 16, 12, 7]. The
fractional-step projection method [26, 49, 63] solves the pressure-velocity coupling in the momentum
transport equation (Eq.(1)). Furthermore, the convective velocity vf (Eq.(8)) is interpolated [11, 13]
to avoid the so-called pressure-velocity decoupling on collocated meshes [51]. Then, the volume flux
(vf ·Af ), normal velocity (vf · ef ) [11]. The reader is referred to [13, 12, 16] for further technical details
about the discretization of transport equations and examples of global algorithms.
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Figure 1: Example of mesh distribution for thermocapillary migration of a droplet on a fixed mesh. Ω is a section
of a cylindrical domain, with angle θ = 30o, radius R = 4 db and height Ly = 8 db (parallel to grad(T )). Here,
db is the spherical equivalent bubble or droplet diameter. Ω is discretized by hexahedrals and triangular prisms.

Figure 2: Thermocapillary migration of a droplet: g = 0. Re = 20.0, Ma = 50.0, Ca = 0.041666, ηρ =
ρc/ρd = 1.0, ηµ = µc/µd = 1.0, ηλ = λc/λd = 1.0, ηcp = cp,c/cp,d = 1.0. Dimensionless migration velocity
V ∗ = (ey · vc,i)/Ur, vc,i is the droplet velocity. Dimensionless time t∗ = t/tr. Dimensionless vertical position,
Y ∗ = (ey · xc,i)/db, xc,i is the droplet centroid. Symbols denote the reference results in a full three-dimensional
cylindrical domain reported by Balcazar et al.(2016) [11].

3 NUMERICAL EXPERIMENTS

3.1 Validations and verifications

Verifications, validations and extensions of the unstructured multiphase flow solver [7, 9, 6, 13, 12] for
interfacial transport processes include buoyancy-driven bubbles [7, 8, 6, 2], thermocapillary migration
of droplets [11, 15], bubbly flows [10, 6, 13, 14, 16], falling droplets [5], binary droplet collision with
bouncing outcome [10], bouncing collision of a droplet against a fluid-fluid interface [10], interfacial
mass transfer in bubbly flows [16, 4, 13, 14], and liquid-vapor phase change [12, 18].

3.2 Thermocapillary migration of a droplet: Fixed unstructured collocated meshes

Thermocapillary migration of droplets is characterized by the physical properties ratios ηβ = βc β
−1
d ,

with β = {ρ, µ, λ, cp}, Capillary number Ca = (|σT | ||∇T∞|| db) (2σ0)−1, Reynolds number Re =
(|σT | ||∇T∞|| d2bρc) (4µ2c)−1, and Marangoni number Ma = (|σT | ||∇T∞|| d2bρccp,c) (4µcλc)−1, sub-
index c denotes the continuous phase and sub-index d denotes the dispersed phase (droplet), db is the
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Figure 3: Thermocapillary migration of a single droplet using adaptive mesh refinement (AMR) on a collocated
unstructured mesh, and MINMOD flux-limiter convective scheme (Eq.(9)). Here, g = 0, Ca = 0.01666, Re = 5.0,
Ma = 20.0, ηρ = ρc/ρd = 2.0, ηµ = µc/µd = 2.0, ηλ = λc/λd = 2.0, ηcp = cp,c/cp,d = 2.0. Present UCLS
and AMR simulations against front tracking simulations of Nas and Tryggvason (2003) [45], and UCLS simulation
on a fixed mesh of Balcazar et al.(2016) [11]. Here, t∗ = t/tr. (a) Migration velocity V ∗ = (ey · v)U−1

r . (b)
Dimensionless droplet surface A∗ = A(t)/A(0), A(t) =

∫
Ω
||∇ϕ||dV . (c) Dimensionless position of the droplet

on the y-axis, Y ∗ = y/Lx. (d) Mass conservation error M∗ =|(M(t)−M(0))/M(0)|, M(t) =
∫
Ω
Hs

ddV .

spherical equivalent bubble or droplet diameter, ∇T∞ = ((Th − Tc)/Ly)ey, Th is the temperature at the
top boundary (hot), and Tc is the temperature at the bottom boundary (cold). Furthermore, the reference
velocity Ur = |σT | ||∇T∞||(0.5db)/µc, reference temperature Tr = ||∇T∞||(0.5d), and reference time
tr = 0.5d/Ur, are defined to report the numerical results.

Figure 1 illustrates the computational setup for simulating single droplets within an axial-symmetric
domain. The domain (Ω) is discretized with hexahedral volumes and triangular prisms, with a grid
resolution equivalent to solving the droplets with h = hmin ≈ {db/30, db/35, db/40, db/50, db/60}
around the symmetry axis of Ω, using 118440 up to 521280 control volumes, distributed in 16 up to
48 CPU-cores, respectively. Neumann boundary conditions are applied to {ϕ, T} in all boundaries.
Concerning the velocity field v, non-slip boundary conditions are applied to the cylinder wall and top
and bottom boundaries, whereas the Neumann boundary condition applies to the angular boundaries. The
initial position of the bubble is set on the symmetry axis at a distance of 1.5 db from the bottom boundary,
with the surrounding fluids initially at rest. The initial temperature field follows a linear distribution from
the bottom boundary up to the top boundary.

The dimensionless parameters are Re = 20.0, Ma = 50.0, Ca = 0.041666, ηρ = ρc/ρd = 1.0,
ηµ = µc/µd = 1.0, ηλ = λc/λd = 1.0, and ηcp = cp,c/cp,d = 1.0. Furthermore, g = 0. Fig-
ures 2 show the dimensionless migration velocity and the dimensionless position of the droplet. The
present axial-symmetrical simulations are in close agreement with UCLS simulations [11] performed on
a tree-dimensional cylinder, proving the capability of the UCLS method to solve two-phase flows with
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Figure 4: Thermocapillary migration of a single droplet using UCLS and AMR, g = 0. (a) Temperature isocon-
tours. (b) Adaptive mesh refinement (AMR) around the interface (Γ). The maximum grid size is hmax = Lx/60,
and the minimum grid size is hmin = hmax/2

4.

interfacial heat transfer and Marangoni stresses on fixed unstructured meshes with non-orthogonal and
mixed control volumes.

3.3 Thermocapillary migration of a droplet: hexahedral Adaptive Mesh Refinement (AMR)

Reference results for this case were reported by [45] using the front-tracking method, [11] using the
UCLS method on fixed hexahedral meshes, and [17, 15] using UCLS, hexahedral AMR and SUPER-
BEE, SMART, VANLEER, UPWIND flux-limiter convective schemes (Eq.(9)). Here, this case is solved
using the UCLS-AMR framework and the MINMOD convective scheme (Eq.(9)). The hexahedral AMR
technique was first reported for single-phase turbulent flows [3], and further extended and optimized to
perform DNS of isothermal bubbles at high Reynolds numbers [2] in the framework of the UCLS method
proposed by Balcazar et al.[13, 5, 7]. The computational setup consists of a rectangle domain (Ω) ex-
tending Lx = 4db in the x direction and Ly = 8db in the y direction. As an initial condition, the droplet
centroid is located above the bottom wall at a distance db. Non-slip boundary conditions are applied on
the top and bottom walls with fixed temperatures Th and Tc < Th, respectively. On the other hand, the
periodic boundary condition is applied to lateral boundaries (x-axis). The material property ratios ηρ,
ηµ, ηcp and ηλ are set to 0.5, whereas the dimensionless parameters are chosen as Re = 5, Ma = 20, and
Ca = 0.0166̄. Figure 3 demonstrates that numerical results computed by the AMR-UCLS method and
MINMOD flux-limiter convective scheme are consistent with reference results reported by [45] and [11]
on fixed meshes, whereas mass conservation error is under control. Figure 3 illustrates an snapshot of
the temperature field and details on the adaptive refinement around the interface.
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4 CONCLUSIONS

The UCLS method for two-phase flow with interfacial heat and mass transfer on fixed and adaptive
collocated unstructured meshes has been introduced. The capabilities of the unstructured multiphase
solver have been proven for thermocapillary migration of droplets using AMR and fixed meshes. An
appropriate selection of the unstructured flux-limiters schemes proposed by Balcazar et al.[13, 7], to
discretize the convective term of transport equations, minimize the so-called numerical diffusion and
circumvents numerical oscillations around the interface. Numerical schemes have led to a robust and
accurate numerical code for simulating two-phase flows with interfacial transport processes on collocated
unstructured meshes with mixed control volumes on fixed meshes, and hexahedral AMR. Ongoing work
includes extensions of the UCLS method to nucleate boiling, and simultaneous heat and mass transfer.
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Balcázar-Arciniega et al.
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