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Summary. An optimization method is presented to improve the performance of a seismic
metasurface to mitigate environmental ground vibration in a wide frequency range. A 3D
coupled finite element – boundary element method is used to solve the dynamic soil-structure
interaction problem. We consider the wave field generated by a point load at the soil’s surface as
a representative case of environmental ground vibration. The metasurface consists of resonators
modeled as single-degree-of-freedom systems on top of square concrete foundations that are
positioned on a homogeneous halfspace. We compute the power flow through a vertical plane in
the soil behind the metasurface as a global performance metric. The integrated power flow over a
range of frequencies is minimized to achieve broadband vibration reduction. The soil is Initially,
the parameters of each row of resonators are considered as design variables. Subsequently, the
parameters of each resonator are optimized individually to investigate the trade-off between
performance and complexity of the design. A local optimization method with a gradient-based
algorithm is used. Both optimized solutions are compared to a conventional solution with graded
resonance frequencies and uniform mass distribution, known as an inverse metawedge. In all
cases, the algorithm converges to a solution at the upper limit of the total mass, but with
a non-uniform mass distribution across the resonators. Both optimized metasurfaces enhance
broadband vibration reduction and achieve a more uniform reduction over a large volume of
soil when compared to the inverse metawedge. The performance of both optimized designs is
similar, indicating that increased complexity does not significantly improve performance.

1 INTRODUCTION

The expansion of railway networks in urban areas has raised concerns about ground-borne
vibration, which can cause discomfort to residents and disrupt sensitive equipment [1]. While
various vibration mitigation measures, such as trenches with in-fill materials and heavy surface
masses, have been explored [2, 3, 4], reducing low-frequency vibrations remains challenging.
Building on advancements in metamaterials in electromagnetics, photonics, and phononics, seis-
mic metamaterials have recently been used as effective solutions for vibration mitigation [5].

Periodic arrangements of non-resonant seismic metamaterials generate Bragg scattering,
which prevents wave propagation [6]. Conversely, locally resonant seismic metamaterials do
not depend on structural periodicity, allowing for smaller dimensions and spacing than surface



Z. Kabirian, D. Carneiro, G. Degrande and G. Lombaert

wavelengths. These locally resonant metamaterials have shown the ability to control wave prop-
agation at low frequencies, making them a promising solution for mitigating railway-induced
vibrations.

Colombi et al. investigate the impact of forests on the attenuation of Rayleigh waves in soft
sedimentary soil at frequencies below 150Hz [7] and introduce a resonant metawedge metasurface
to control seismic Rayleigh waves [8]. This metasurface, made of vertical resonators with graded
resonance frequencies, can convert Rayleigh waves into shear waves or reflect them, creating
a seismic rainbow effect. A study on optimizing local adaptive resonators in a mass-in-mass
structure demonstrates that spatially varying unit-cell properties enhance seismic protection
effectiveness [9]. A recent study of metasurfaces on layered soils shows a significant drop in
performance when the resonators are not excited by body waves traveling in the upper layer
[10]. Further study on how the performance of seismic metasurfaces can be improved is required.

This paper explores the potential of optimization for enhancing the performance of seismic
locally resonant metasurfaces in the reduction of environmental ground vibration in a broad
frequency band and a large volume of soil. In order to measure the transmitted vibration,
the power flow through a vertical plane in the soil behind the metasurface is calculated. The
integrated power flow over a wide frequency range is minimized in the optimization problem.
Forward modeling relies on a 3D coupled finite element-boundary element method (FE-BE),
where the metasurface is modeled as single-degree-of-freedom systems on top of square concrete
foundations interacting with layered soil. The mass and resonance frequency of the resonators
are the design variables.

The paper is organized as follows. In section 2, the formulation of the optimization problem
is described. It states how power flow analysis is used to quantify the vibration mitigation
performance of the metasurface. Section 3 describes the properties of the considered cases. In
section 4, the obtained optimized metasurfaces on a homogeneous soil are described and results
are compared to the inverse metawedge. Conclusions are given in section 5.

2 Formulation of the optimization problem

Figure 1 shows an array of Nx by Ny resonators positioned with lattice constants ax and ay
on top of a horizontally layered soil represented by the unbounded domain Ωe

s . The metasurface
is placed at a distance D from the origin of the coordinate system where the source S is located.
The metasurface serves to shield a large volume of soil from the generated wave field. A 3D
coupled finite element-boundary element method is used to solve the soil-structure interaction
problem [10].

The aim of the optimization is to tune the parameters of the resonators so that the vibration
reduction performance of the metasurface is maximized. The problem is formulated as follows:

θ∗ = arg min
θ

{g(θ)} (1)

s.t. h(θ) ≤ 0

θl < θi ≤ θu
(2)

where θ is the vector of design variables, g(θ) is the objective function which measures the
performance of the metasurface and h(θ) is the vector of inequality constraints. Additional
constraints defining the lower and upper bounds θl and θu of the design variables are added.
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Figure 1: An array of surface resonators on a layered soil.

In order to capture the global performance of the metasurface in terms of transmitted wave
energy, we consider the mean power flow through a plane Σp in the soil located on the transmis-
sion path behind the metasurface (figure 1). This metric enables us to quantify the effectiveness
of the metasurface in vibration reduction in a global way without focusing on the response of
local receivers. Therefore the objective function in the optimization problem is the integrated
power flow through a plane Σp in a frequency range between ωl and ωu as:

g(θ) =

∫ ωu

ωl

⟨P̂ (Σp, ω,θ)⟩dω (3)

A hat on a variable denotes its representation in the frequency domain. The basic principles of
power flow analysis [11] are briefly recapitulated. Consider an infinitesimal boundary dΓ with
unit outward normal vector n through a point Q of a continuum Ω (figure 2). The instantaneous
power flow pn(t) through dΓ at time t, or the rate of work performed by the tractions tn(t), is
defined as the inner product of the traction vector tn(t) and the velocity vector v(t):

pn = −tn · v, (4)

where the minus sign ensures a positive transmission of energy per unit of time through the
surface dΓ from the inner to the outer side as shown in figure 2 [12].

Using Cauchy’s stress formula, the instantaneous power flow can be written as follows:

pn = −(σ · n) · v = −(σT · v) · n = p · n, (5)

where p(t) is the instantaneous power flow density vector [11]. The mean power flow density
vector ⟨p̂(ω)⟩ is the time average of p(t) over a period of vibration 2π/ω and can be obtained
as [13]:

⟨p̂⟩ = −1

2
Re
(
σ̂∗ · v̂

)
= −1

2
Re
(
iω σ̂∗ · û

)
, (6)
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Figure 2: Traction vector tn(t) and velocity vector vn(t) in a point Q on an infinitesimal boundary dΓ
of a continuum Ω with outward unit normal vector n.

where ∗ denotes the complex conjugate. The total mean power flow (briefly referred to as the
power follow in the following) ⟨P̂ (Γ, ω)⟩ through a surface Γ is calculated as follows:

⟨P̂ ⟩ =
∫
Γ
⟨p̂n⟩ dΓ =

∫
Γ
⟨p̂⟩ · ndΓ. (7)

To compute the power flow ⟨P̂ (Σp, ω,θ)⟩ through Σp the velocities and the tractions are com-
puted with the boundary element method [10].

A nonlinear gradient-based optimization algorithm based on sequential quadratic program-
ming as implemented in the Matlab function fmincon has been adopted to solve the optimization
problem. For this method, the sensitivities of the objective function and constraints are required
at each iteration. The gradients are computed with the adjoint method which is efficient when
the number of a design variables is high.

3 Case description

An array of 100 resonators (Nx = 10 by Ny = 10) with lattice constants ax = ay = 2m is
considered on top of a homogeneous soil with a shear wave velocity Cs = 150m/s , dilatational
wave velocity Cp = 300m/s and density ρ = 1800m/kg3. The hysteretic material damping
ratios in shear and volumetric deformation are βs = 0.02 and βp = 0.02, respectively. The first
row of the resonators is located at a distance D = 12m from the source. Each resonator is
modeled as a single-degree-of-freedom system connected to the center of a rigid square concrete
foundation of dimensions 0.5m × 0.5m × 0.1m and mass 62.5 kg. Rigid body kinematics are
assumed for the foundation, and hence, no FE model is used. A unit point load is applied on
the surface of the soil in the frequency range between ωl = 2π×30 rad/s and ωu = 2π×70 rad/s
to represent a broadband source.

The power flow in equation (3 serves as the objective function for the optimization problem
and is calculated through a plane with dimensions Ly = 22 m and Lz = 4 m. Two cases are
considered in the optimization problem to investigate the trade-off between complexity and
performance. In case 1, all resonators located on a same row have the same mass and resonance
frequency. In the literature, this configuration is known as a metawedge configuration [14].
Therefore, the mass and resonance frequency of each row (i = 1, 2, ..., Nx) of the resonators
are optimized, leading to 20 design variables θ. In case 2, the mass and resonance frequency
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(with fixed base) of each resonator k (k = 1, 2, ...,NxNy) are optimized, resulting in 200 design
variables θ.

The mass of the resonators is bounded in a range between θl = 1kg and θu = 300 kg. A lower
bound θl = 10Hz and an upper bound θu = 150Hz are imposed for the resonance frequency. To
maximize the performance of the metasurface for a given cost, the total mass of the resonators
is limited to 20000 kg. The modal damping ratio of the resonators is chosen as ξ = 0.03.

In the following section, the performance of the optimized metasurface is compared with an
inverse metawedge [10].

4 Vibration mitigation performance of the optimized metasurface

An inverse metawedge consisting of resonators with fixed base resonance frequency increasing
from 30Hz to 70Hz in the x−direction is considered as a reference solution (figure 3a). Each
resonator has a mass of 200 kg. After 110 iterations the optimization converges to the case
1 configuration as shown in figure 3b. As expected, the algorithm converges to the maximum
allowable mass. The general trend is that the mass of the resonators increases from 140 kg on the
first row to 300 kg on the third row and then decreases to 60 kg on the last row. The resonance
frequency of the resonators is between 40Hz and 70Hz. The resonance frequency starts at
65Hz for the first row, decreases to 40Hz for the third row, and follows a similar pattern for
the next three rows. The last four rows have higher resonance frequencies between 65Hz and
70Hz. Figure 3c shows the optimized configuration for case 2. The algorithm after 320 iterations
converges to a symmetric configuration with respect to the y−axis as expected because of the
problem symmetry. The mass is mostly distributed along the center line of the metasurface.
Most resonators located at y = 9m have the minimum mass of 1 kg, indicating that it is less
effective to place resonators here. The resonance frequency of the relevant resonators (with high
mass) is between 30Hz and 85Hz. In general, resonators with higher resonance frequencies are
closer to the source.

(a) (b) (c)

Figure 3: Resonance frequency and mass of the resonators of the (a) inverse metawedge, (b) case 1 and
(c) case 2.

The real part of the vertical displacement at 35Hz, 50Hz and 65Hz is shown for a part of
the soil domain in figure 4 for all three cases. The resonators are shown with black squares on
the soil’s surface. Due to the symmetry of the problem, the wave field is symmetric with respect
to the xz-plane. Figure 5 shows the corresponding insertion loss, which is defined as:

ÎLzz(x, ω) = 20 log10

∣∣∣∣ ûrefzz (x, ω)

ûzz(x, ω)

∣∣∣∣ , (8)
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where ûrefzz (x, ω) and ûzz(x, ω) are the response without and with resonators.
For the inverse metawedge, vibration reduction is attributed to the convergence of surface

waves to body waves when the wavefront reaches the resonators with a resonance frequency close
to the excitation frequency [7] (figures 4a,4d and 4h). Figures 5a, 5d and 5h clearly show how
the vibration reduction near the soil’s surface occurs at the expense of amplification at larger
depths due to the conversion of surface to body waves. Vibration reduction is more pronounced
at 50Hz.

Case 1 shows higher vibration reduction at 60Hz (figures 4i and 5i). In case 2, vibration
reduction is slightly higher at 35Hz (figures 4c and 5c). Moreover, at 50Hz, a more uniform
reduction on the surface of the soil is observed (figures 4f and 5f).
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Figure 4: Real part of the vertical displacement Re (ûzz(x, ω)) [m/Hz] at (a-c) 35Hz, (d-f) 50Hz, and
(h-j) 65Hz for (a,d,h) the inverse metawedge,(b,e,i) case 1 and (c,f,j) case 2.

The performance of all cases is now evaluated by considering the vertical mobility of a grid
of receivers in a volume Ωobs with center at x = 44m and dimensions and 12m × 20m × 1m
as shown in figure 6. The position of each receiver is shown with a black point in figures 4 and
5. As a global measure of the response over the grid Ωobs the spatially averaged mobility is
superimposed in figure 6. Although the resonance frequencies of the resonators in the inverse
metawedge are graded between 30Hz and 70Hz, the averaged vertical mobility shows a reduction
between 25Hz and 55Hz and the performance drops for higher frequencies (figure 6a). This is
due to the fact that interaction of the resonators with the soil results in a reduction of the
previously mentioned resonance frequencies for resonators on a fixed base. Case 1 enhances the
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Figure 5: Vertical insertion loss ÎLzz(x, ω) [dB] at (a-c) 35Hz, (d-f) 50Hz, and (h-j) 65Hz for (a,d,h)
the inverse metawedge, (b,e,i) case 1 and (c,f,j) case 2.

vibration reduction in a wider frequency range between 30Hz and 80Hz. Case 2 also shows
a stronger vibration reduction in a wider frequency range. Moreover, the reduction in vertical
mobility of each receiver is highly similar, indicating a more uniform vibration reduction.
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Figure 6: Modulus of the vertical mobility of all receivers in Ωobs for the (a) inverse metawedge, (b)
case 1 and (c) case 2. Superimposed is the averaged mobility with (black) and without (dark gray)
metasurface.

In order to compare the vibration reduction performance of the three arrangements, 7a shows
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the averaged insertion loss over the domain Ωobs:

ÎLzz(ω) = 20 log10

(
1

Ωobs

∫
Ω

∣∣∣∣ ûrefzz (x, ω)

ûzz(x, ω)

∣∣∣∣ dΩ) . (9)

Figure 7b shows the corresponding power flow insertion loss ⟨P̂FIL(ω)⟩ through the plane Σp:

⟨P̂FIL(ω)⟩ = 20 log10

(
⟨P̂ ref

p (Σp, ω)⟩
⟨P̂p(Σp, ω)⟩

)
. (10)

The results in figure 7b are consistent with those in figure 7a, demonstrating that optimiza-
tion enhances vibration reduction in a wider frequency range when compared to the inverse
metawedge. The results also confirm that power flow is an effective global measure of vibration
reduction as the global trends in figures7a and 7b are similar.
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Figure 7: (a) averaged vertical insertion loss for all receivers in Ωobs and (b) power flow insertion loss
through the plane Σp for the inverse metawedge (black), case 1 (blue) and case 2 (red).

5 Conclusion

The performance of seismic metasurfaces in broadband vibration mitigation is optimized
based on power flow analysis. We evaluate the efficiency of the metasurfaces by calculating the
power flow through a plane behind the metasurface in the soil. The mass and the resonance
frequency of the resonators are design variables. Two cases are considered. In case 1, the dy-
namic parameters of each row of the resonators are design variables. In case 2, a more complex
configuration is considered where the dynamic parameters of each resonator are optimized in-
dividually. The optimization problem relies on a 3D coupled finite element-boundary element
method where the resonators are modeled as single-degree-of-freedom systems on top of square
concrete foundations placed on top of layered soil. The optimized configurations are compared
to an inverse metawedge. Both optimized solutions enhance the vibration reduction in a wider
frequency range. Making the design more complicated is not found to significantly improve the
performance. The results show that optimization can be a powerful tool to tune the properties
of the metasurface to the specific characteristics and needs of the problem at hand.
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