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Summary. Determining wind energy yield and predicting wind farm performance is challeng-
ing due to the uncertain behavior of wind and the need for multiple CFD simulations across
various scenarios and parameters, such as tree height, roughness, and wind direction. These
simulations are computationally expensive and time-consuming, making Monte-Carlo methods
impractical for extensive site assessments.

This work explores the feasibility of using two types of neural networks—data-driven and
physics-informed—for wind resource assessment. One network learns from CFD simulation data,
while the other is trained directly with the physical equations (RANS and Navier-Stokes). Both
networks are configured as feed-forward convolutional neural networks, with a loss function that
incorporates residuals from either the data or the physical equations. The L-BFGS optimization
algorithm is employed to minimize this loss and determine the network hyperparameters. The
network predictions are compared with CFD simulations for two cases: flow over complex terrain
and flow over a hill.

The accuracy and limitations of these networks are evaluated by examining the multi-objective
loss function, which includes errors from both data and physical equations. The trained networks
demonstrate promise in accurately simulating wind resource assessments and offer potential im-
provements in accelerating CFD setups.

1 Introduction

A Computational Fluid Dynamics (CFD) software tool is a typical workhorse used for predic-
tive simulations in site assessment for predicting the performance of wind farms and understand-
ing the influence of parameter or environmental variations on wind resource, namely wind speed
and/or wind energy yield [1, 2]. The CFD-based software is deterministic, in the sense that a
single case (with a specified set of input parameters, physics, initial and boundary conditions
for a specific terrain) setup will generate a case-specific simulation result [3]. Any change in the
case setup will require a new simulation run. Typically, to understand the influence of input
variation of parameters, one would require solving for multiple cases using a CFD simulator.
Most often, for the real complex terrains, the CFD simulations are computationally expensive,
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due to which its use in practice is rather limited. Due to time and cost constraints, practition-
ers are often assessing sites and wind resource based on inaccurate and/or limited number of
cases predictive runs. Industry is constantly on the lookout for better, faster workflows that
can assess wind resource[4]. Keeping this in mind, this work investigates AI-driven approaches,
particularly training of two different neural networks, for enhancing CFD work flows for evalu-
ating wind resource for complex terrains. This work is driven towards faster and reliable wind
resource assessment facilitated through the training of neural networks.

This work looks into two different kinds of training mechanisms for neural networks using
a feed-forward convolutional network [5, 6], namely data-driven and physics-informed neural
networks[7, 8]. data-driven network relies on training data that come from simulation results
from CFD, whereas the physics-informed network directly incorporates physical models used for
CFD instead of the simulation results. The feasibility of the two networks is investigated for two
benchmarks that are introduced in Section 2 for site assessment. Section 3 describes how different
mechanisms of training of networks can be incorporated in the loss functions. Configurations
for both networks is described are data-hungry and rely on the network configurations. The
question on how predicted estimates from trained networks compare to CFD simulation results
is addressed in Section 4. We shed some light on ways in which the trained networks can be
used to facilitate the CFD toolchain. Section 5 discusses the potential use of trained networks
such as generating precursors/initial states for CFD simulation speed up to enhance run-time
for new cases/changes in input parameters.

2 Problem setup

In this section, we set up two benchmarks to investigate the feasibility of physics informed
networks. Both benchmarks use OpenFOAM-based CFD setup/simulations for generating train-
ing data/physics and providing reference solutions (for wind speed) for validating the networks
described in Section 3.

The first use case is constructed to assesses the impact of forest height variation and wind
direction on wind speeds on a complex terrain in the region of Baden Wuerttemburg, Germany.
The objective is to use a subset of CFD simulated estimates of wind speed to train the neural
network and assess the feasibility of the data-driven neural network, discussed in Section 3.1.

The second use case serves as a a classical benchmark for wind flowing through a flat terrain
including a small bump. The objective is to use this as a validation benchmark to assess the
feasibility of the physics-informed neural network, discussed in Section 3.2.

2.1 Use case 1

The use case presented here serves as an validation benchmark for the data-informed network
described in Section 3.1. This use case is set up to understand how canopy foliage, particularly
its height, impacts the variability in wind speed in complex terrains. Several cases with a
forest height variation, for example five heights varying from 5− 25m, each with 36 states/wind
directions 0 − 36 deg, is overlay on the terrain. The time-averaged Reynolds averaged Navier-
Stokes equations are used to describe the flow in the terrain. The workflow is shown in Figure
1. In this work Fraunhofer IWES Wind Simulation Environment (FIWIND) has been used
based on OpenFOAM-v2306 version. The core model physical model was first introduced in [1].
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FIWIND has been used and validated in several recent studies [2, 9, 10] 1.FIWIND is used to
generate results for 36× 5 = 180 cases of CFD simulations to assess the forest height variation
and wind direction on wind speeds. The results from CFD simulations are then post processed
by a customized interface for assessing wind resource.

Figure 1: A deterministic workflow for CFD simulation tool to study the impact of forest height
on wind speed in a chosen complex terrain.

The results from the CFD-setup are full flow field variables (wind speed and pressure) on
2D/3D domain. One could potentially select certain points of interest and harvest vertical
profiles to closely assess the variability of wind speed for different forest height simulations for
different wind directions.

2.2 Use case 2

The use case presented here serves as an validation benchmark for the physics-informed
network described in Section 3.2. CFD simulations are use to estimate flow in a simple channel-
like domain. Since the physical model and boundary conditions are used to set up the training
of the physics-informed neural network, we will formally sketch out the set up of this benchmark
in detail.

The two-dimensional steady state, time-independent Navier-Stokes equation governing lami-
nar, incompressible, isothermal fluid flow is used to govern the flow in the interior of the domain
Ω:

e1 : ∇ · u⃗ = 0 (1)

e2,3 : −∇ · (µ∇u⃗) + (ρu⃗ · ∇)u⃗+∇p = f (2)

Here e1 denotes the continuity equation, e2 and e3 denote the momentum equations for
velocity components u⃗ = (u, v). p denotes the pressure, whereas ρ and µ denote the density and
viscosity of the fluid respectively. The equations are equipped with boundary conditions, usually
of Dirichlet or Neumann type. A 2D channel with a small bump is considered as the domain
of interest as shown in Figure 2. At the inlet boundary, Dirichlet inflow velocity u⃗ = (uin, 0) is
prescribed. At the outflow and top boundary Dirichlet pressure p = 0 and Neumann velocity
δu⃗
δn is prescribed. The bottom boundary has no-slip conditions, i.e. u⃗ = (0, 0), p = 0 prescribed.

1FIWind is developed in Fraunhofer IWES. It includes pre and post processing interfaces to have more flexibility
in setting up site assessment problems (domain, mesher, and setting up the input parameters/boundary conditions
and doing some precursor runs). The CFD kernel is based on OpenFOAM - the main physical models are NS,
RANS and LES.
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Figure 2: Mesh defined with number of cells; Internal: 2000, cylinder: 40, input: 30, output:
30, top: 60, bottom: 60

3 Feed-forward convolutional neural network

This section introduces a simple forward-feed convolution neural network (FFCNN) used for
training both data-driven and physics-informed networks. Further details on those networks are
provided in the subsequent subsections.

A multilayer FFCNN is primarily defined by three components: multiple hidden layers con-
sisting of neurons, and a global architecture that included both input and output layers. If the
weight wl

jk connects the k-th neuron in the (l − 1)th layer to the j-th neuron in the l-th layer,

the relationship for the output ũlj can be expressed as follows:

ũlj = σ

(∑
k

wl
jkũ

l−1
k + blj

)
= σ

(
zlj

)
.

Each neuron in a layer is connected to each neuron of the next layer, with each connection
associated with a weight (w), a bias term (b), and an activation function(σ). The activation
function is applied to a signal at each layer before passing it to the next layer.2 The choice of
the activation function typically depends on factors such as explosion or vanishing gradients,
ensuring clear predictions, and achieving computational efficiency. In our case studies tanh
activation function delivered the best estimates.

Figure 3 shows a data-driven feed forward network with a 2-node input layer and an output
layer. In principle, a network can be trained using data, rules/physics or a combination of both
data and physics.

The goal is for the network to learn how to classify solutions/patterns/relationships based on
the information in the provided input-output pairs. To train a network using a backpropagation
algorithm, its performance must be quantifiable and measurable. This is done by defining a loss
function that evaluates how changes in network parameters (weight and biases) affect the output
error, comparing the network’s output to the desired target solution (whether from training
data or physical model). Training of a neural network is thus a multi-objective optimization
problem, where the cost or loss function, typically expressed as mean squared error, needs to be
minimized. A neural network requires an optimization routine to adjust its weights and biases
in a way that minimizes the loss function defined on its output. This optimization is typically
performed using a (stochastic) gradient descent algorithm or a quasi-Newton method. Training
is considered complete when the network finds parameters that achieve the desired accuracy of
the loss function.

2For instance, a sample input u with a sigmoid activation function undergoes a transformation of σ(u) = 1
1+e−u

before reaching the next layer.
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Figure 3: A simple feed forward convolution neural network configured with 2-node input layer,
2 hidden layers (with 4 and 3 nodes per layer) and a single node output layer.

Simply put, the network parameters θ (weights and biases) are optimized so that the network’s
output closely matches the the desired target solution. The loss functions that account for the
error terms in both data-driven and physics-informed are described in the following subsections
3.1 and 3.2.

3.1 Data-driven neural network

A data-driven is denoted by U(x,u∗; θ), where x, u∗ and θ represent a vector of spatial
coordinates, the known values and the network parameters respectively. The network U is
trained using the input-output pair (x,u∗), with the goal of learning to classify patterns between
these pairs.

The objective of the training process is to find the network parameters that minimize the
error or loss between the network’s predicted values and the provided training data. This error is
typically expressed as the mean squared error (MSE), which is calculated by taking the difference
between the network’s output ũ(x) and the desired target value u∗(x)):

Ldata = Ldata (θ | (x,u∗)) =
1

N

N∑
i

∥ũ(xi)− u∗(xi)∥22 . (3)

Here, Ldata denotes the loss function for a network trained using N input-output data pairs.
The predicted output of the network ũ = ũ(x, θ) is expressed as a function of the input x and the
network parameters θ. The training process aims to find θ, given the input (x,u∗), by solving
the following optimization problem

argminθLdata (θ | (x,u∗)) ,

where the function u∗ maps x to measurements/true solution at those coordinates. The learned
function is based just on the training input data u∗ and x.

3.2 Physics informed neural network

Similar to the data-driven network, a physics-informed network can be represented by U(x, physics; θ),
where the network is trained using physical models or rules, rather than data, defined for the
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Figure 4: A simple feed forward convolution neural network configured with 2-node input layer,
2 hidden layers (with 4 and 3 nodes per layer) and a single node output layer.

spatial coordinates. When seeking the steady state solution of a boundary value problem, the
partial differential equations and boundary conditions defined over the spatial domain (both
interior and external boundaries) can be incorporated into the loss function. In this approach,
the physical equations evaluated at interior points along with boundary conditions, serve as the
training data. The function that the network learns is the solution to the physics model, denoted
by ũ(x).

The FFCN for physics-informed training is similar to the the one described for data-driven
networks in Section 3.1. However, because partial differential equations and boundary conditions
involve derivatives, the FFCN is integrated with a gradient layer. This gradient layer takes the
entire data-driven network as input and produces derivatives of the network’s approximation to
the solution of the partial differential equation. The derivatives of the output ũ are then used to
calculate the strong residuals of the partial differential equation. The norm of these residuals,
along with norms of residuals of the boundary conditions, contributes to the loss functions.
Figure 4 illustrates a data-driven two-layer FFCN with a 2-node input layer and an output
layer, coupled with a gradient layer.

The goal of the training process is to adjust the network parameters so that the network
accurately learns the solution to the given physcial model. This involves incorporating the
residuals of the partial differential equations and boundary conditions into the loss function,
ensuring that the error between the network’s predictions and the physical model is minimized.
The partial differential equations are expressed in parameterized form, and the loss function is
formally defined as follows:

Lphysics = Lphysics(θ| (x, physics,u∗)) = LPDE + LBC. (4)

The first term of the loss function, LPDE calculates the norms of the equation residuals.
Specifically, LPDE represents the mean squared error between the equation residuals and zero,
as all the equation terms are collected on the left side. The goal is to minimize these residuals
towards zero. A finite set of residual points, where the equations are penalized, can vary in
number and be located throughout the domain, whether structured or unstructured. These
points are known as collocation points. Let N denote the number of collocation points for a set
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of Neqs equations. Then,

LPDE =

Neqs∑
j=1

1

N

N∑
i=1

∥ej(xi)∥22. (5)

Dirichlet boundary conditions are included in LBC which measures the mean squared of error
between the prescribed boundary conditions, denoted by u∗, on each boundary of the domain
and the model predictions, denoted by ũ. Let there be Nbdry boundaries (such as solid, inlet,
outlet, etc.), denoted by Γj , with each boundary having Mj points. Then

LBC =

Nbdry∑
j=1

1

Mj

Mj∑
x=1

∥ũ(xi)− u∗(xi)∥22 .

Neumann or Robin boundary conditions, which involve derivatives, are incorporated as resid-
ual penalties in a manner how equations are inccluded in Equation 5).

DDNN uses a single-objective loss function, whereas PINNs optimize training parameters by
minimizing a multi-objective loss functional Lphysics.The training process of PINNs addresses
the following optimization problem:

argminθL(θ | (x, physics,u∗)).

4 Results

The results for the two setups described in Section 2 are presented here for trained networks
discussed in Section 3. In the first use case, CFD simulation results are used to train a data-
driven neural network. In contrast, the second use case employs CFD physics to train a physics-
informed neural network to solve the steady-state Navier-Stokes equations.

4.1 Use Case 1

A site in Baden-Württemberg, featuring an elevation map ranging from 0 to 800m is consid-
ered, as shown in Figure 5 (left), is considered. With a fixed mesh resolution of 60m, the terrain
is overlaid with a forest canopy model that has a constant leaf area density of 0.07, as shown
in Figure 5 (middle). The red-shaded area represents the forested region. The forest height
variation is sampled using a Gaussian distribution with a mean of 15m and standard deviation
of 5m.

The FIWIND toolchain is used to simulate the flow over this terrain for five different forest
heights and 36 distinct wind directions. Figure 5 (right) shows the wind speed estimated for one
configuration (forest height = 15m and wind direction = 225 degrees). Four points of interest
within the domain, marked by red dots in Figure 5 (right), are selected, and the wind speed
profiles are extracted for heights ranging from 0-400m. Figure 6 displays the wind speed profiles
at one of these points for four different wind directions (45, 135, 225 and 315 degrees). Each
plot shows five different profiles corresponding to forest heights of 5,10,15,20 and 25m. The
state-forest profiles are divided into training and testing sets, with the testing data comprising
profiles corresponding to 15m forest height and wind directions of 45, 135, 225, 315 degrees.
The remaining data is used to train the data-driven network described in Section 3.1.

Various architectures, as shown in Figure 7, are evaluated to determine the optimal config-
uration for this training data. The best-performing network architecture with the least mean
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Figure 5: Left: Elevation map for a site in Baden Württemberg. Middle: Frorest cover marked
in red. Right: CFD estimated wind speed at 100m hub height.

Figure 6: CFD simulated wind speed profiles along a height of 0-400m. Each plot shows five
profiles, each corresponding to a forest height. A subset of these column profiles are used to
train the DDNN.

squared error, labelled ’Arch 1’, consists of 9 hidden layers with 50 nodes each and uses σ = tanh
activation function.

Wind speed estimates from the best-performing DDNN are validated against CFD results for
the testing set with a forest height of 15m, as shown in Figure 8. The DDNN predictions closely
match the CFD simulations, with an error bound of O(10−1).

4.2 Use Case 2

A channel with dimensions of 80x20m, featuring a semi circular hill with a 5m radius located
at 20m from the inlet, is set up to replicate flow over a flat terrain with a hill. The governing
physics of laminar flow in this domain is described by the Navier-Stokes equations, as discussed
in Section 2.2. The specific boundary conditions with inlet velocity of u⃗ = (0, 1) m/s, outlet
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Figure 7: Mean squared error for different network architectures.

Figure 8: Predictions from data driven neural network are compared against CFD solutions for
a selected point of interest for four states and forest height 15m.

zero-pressure and no-slip conditions are prescribed for the bump and the top and bottom walls.
The equations together with the boundary conditions are used to formulate the residual loss
function for training the network described in Section 3.2. The training data consisted of spatial
grid points within the domain’s interior and on its boundaries. For the results shown in Figure
9 (left), 6400 points were uniformly distributed throughout the channel interior, with 640 points
on both the inlet and outlet, and 1280 points on both the top and bottom boundaries. NVIDIA’s
Modulus framework [11] is used to set up the domain, and the physical model and boundary
conditions are imposed on the collocation points.

The loss function is crucial for assessing the performance and accuracy of the trained network.
In PINNs, the loss is residual-based and its expected that the loss function would reach zero.
The loss functions are formulated and the physics-informed solver in Modulus is invoked to train
the network. A closer examination of the loss function, as shown in Figure 9 (right), provides
valuable insight into the learning process for PINNs.
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Figure 9: Left: Velocity and pressure profile estimates using PINNs. Right: Convergence of the
loss function that is used for training the network.

Recall that each equation in the physical setup, along with its boundary conditions, con-
tributes its own loss term, and the sum of these terms forms the overall loss function. Figures
10a and 10b show the convergence of the residual loss function over 200000 epochs for the Dirich-
let boundary conditions and the physical equations. Constraining the horizontal velocity (at the
inlet and walls) and ensuring continuity proved to be more challenging compared to the other
terms.

(a) Loss for boundary points (b) Loss for PDEs

Figure 10: Monitoring network training for use case 2 through loss functions. Left: Convergence
of the residuals for the Dirichlet boundary conditions on inlet, walls and outlet. Right: Conver-
gence of the residuals for each of the equations (momentum and continuity).

For validation, OpenFOAM (icoFoam) software is used to simulate the same setup, utilizing
the computational mesh described in Section 2.2. The simulated velocity and pressure profiles
from OpenFOAM are shown in Figure 11 (left). The errors between the OpenFOAM and PINN
estimates, shown in Figure 11 (right), indicate that the velocity and pressure profiles predicted by
the PINN closely match the CFD simulation results, with errors within O(10−1). Additionally,
the ’wake’ effect and recovery caused by the hill are well captured by the PINN.
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Figure 11: Left: Velocity and pressure profile estimates using OpenFOAM setup. Right: Rela-
tive error between the OpenFOAM (reference) against PINNs estimates.

5 Conclusion

This work explores the feasibility of using physics-informed machine learning approaches for
wind resource assessment. Two benchmarks are established to validate the performance of both
data-driven and physics-informed neural networks. The network predictions are then compared
with CFD simulation results for validation.

The data-driven benchmark utilizes CFD simulations from the FIWIND toolchain as training
data. The CFD results include 180 simulations for studying the impact of forest height variation
on wind speed, out of which 160 are used to train the network. The trained network is used to
estimate the wind speed for the 20 cases that are not included in the training data set.

The physics-informed benchmark involves a setup with flat terrain and a hill, where the
flow is governed by the Navier-Stokes equations. This setup, along with the physical model, is
implemented within NVIDIA’s Modulus framework. The network estimates are compared to
CFD simulations performed using OpenFOAM.

For both benchmarks, the network predictions were validated against the CFD simulation
results, achieving accuracy within 10−1. It can be concluded that network predictions are
influenced by the amount of training data, specifically the number of input-output pairs used
during training. The results suggest that AI-powered network estimates offer significant benefits.
In the wind industry, accurately assessing wind resources typically requires a large number of
CFD simulations, which can be computationally expensive. Neural networks can be trained on
specific benchmarks or historical data from legacy sites. Once fully trained, these networks can
provide real-time results comparable to those of conventional CFD simulations. This capability
could enable resource assessment teams and wind farm planners to run more simulations in
shorter timeframes, providing quicker insights and improving efficiency.
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