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Summary. This paper aims to improve the efficiency of large-scale turbulent simulations by
improving the arithmetic intensity of the operations. This is done by applying a parallel-in-
time ensemble averaging technique so that multiple flow states are run simultaneouslly in the
same device. This transforms sparse matrix-vector products into sparse matrix-matrix products,
improving the arithmetic intensity.

The performance of these operations as well as the speed-ups generated in the operation itself,
in the whole iteration and an estimation in the whole simulation is presented, so that for cases
in which the averaging interval is significantlly longer than the transition interval, remarkable
speed-ups in the whole iteration are obtained.

1 INTRODUCTION

Finite-volume solutions of the Navier-Stokes equations are usually characterized by a few
algebraic (or stencil-based equivalent) operations, i.e. the dot product (dot), the linear com-
bination of vectors (axty), the elementwise product of vectors (axty), and the sparse matrix-
vector product (SpMV). Among all these operations, for typical applications of the simulation of
the Navier-Stokes equations, the SpMV is a bottleneck: even though the available computational
power to do the operations is big enough, data cannot be provided fast enough to use all the
resources. This is defined as a memory-bound code, as Williams et al. [I] defined in their
roofline model: performance is bounded by data rate instead of flops. Therefore, addressing
the memory-boundness of CFD codes is of big importance to reach the full potential of current
high-performance computing (HPC) systems.

An increase of the arithmetic intensity (AI) will move the status of the computation closer to
the compute-bound: the calculations will be less dependant on how much data can be transferred.
In order to deal with this, previous studies play with the composition of the SpMV operation so
that the amount of data to transfer is reduced.
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In his study, Krasnopolsky [2] suggests that by running a set of m flow states of the same
simulation, simultaneously, to compress all the SpMV operations into the product of a sparse and a
dense matrix consisting on all the vectors of the different flow states (Generalized sparse matrix-
vector product GSpMV) within the solution of the Poisson equation. According to Makarashvili
et al. [3], if these flow states are statistically independent, then the ensemble average of these
flow states will lead to the same flow statistics that would be obtained from a long averaging
simulation. By doing so, the total simulated time (averaged) could be reduced by a factor of
m which given the proper flow conditions might lead to an eventual speed-up of the whole
simulation.

In this case, for a turbulent channel flow the study shows a maximum speed-up of 1.58 with a
times ratio, i.e. the ratio between the averaging time and the transition time, of 20. For a more
complex case such as a channel with wall mounted cubes, the maximum speed-up obtained for
the same times ratio of 20 is 2.35, while preserving in all cases the computed turbulent statistics.

On the other hand, Alsalti-Baldellou et al. [4] uses repetitions in the geomtry, i.e. symmetries
and repeated patterns, in order to exploit the block structure of the matrices in the domain and
thus applying a sparse matrix-matrix product, SpMM in the totality of the SpMV operations of
the simulation. This way, the benefits of the increased Al are not only applied in the solution
of the Poisson equation but instead in the whole simulation. By exploiting this, the study
showed speed-ups up to 5 with the product with the Laplacian operator in CPU cores, and up
to 3.25 when performed in GPU nodes by exploiting 3 symmetries, i.e. 8 columns in the dense
matrix. A similar behaviour was observed for the gradient and divergence operator as well. By
exploiting this, a reduced memory footprint of the whole simulation was obtained as well as the
improvements in performance.

Hence, in this work, the SpMM operations have been applied in the framework of a parallel-
in-time simulation with ensemble averaging of the results in order to test and analyze the per-
formance of this framework given the additional benefits of applying the improved arithmetic
intensity operations to all sparse matrix-vector products instead of in just the solution of the
Poisson equation.

2 PARALLEL-IN-TIME ENSEMBLE AVERAGING SIMULATIONS

As firstly introduced by Krasnopolsky[2], a parallel-in-time ensemble averaging simulation is
based in running m simultaneous shorter simulations in the same device. Afterwards, according
to Makarashvili et al. [3], if the averaging has started when all simulations are statistically in-
dependent, i.e. the correlation between each simultaneous flow state is 0, the ensemble averaged
results will be the same as the ones obtained from a classical time averaging simulation.

In order to do so, given that the simulated time for the classical setup is defined as T + T4,
being 17 the destinated transition time, and T4 the averaging simulated time, for the studied
framework, given m flow states are simulated simultaneouslly, the total simulated time will be

T(m) =T + % (1)

as depicted in Fig.
Note that in this case the transition time, T should be such that it allows the different flow
states to be statistically independent so that the results from Makarashvili et al. [3] can be
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Figure 1: Transition time, T, and averaging time, T4, of a numerical simulation with 1 rhs (gray) and
m rhs (red).

applied. Note that the different flow states will be determined as statistically independent when
the cross-correlation function, py,.,, is zero [2],

Pugu; = covlu, i) ) (2)
var(ug)var(uy)
where k,l are two indices indicating a different flow state. Note that the transition time is
defined a priori, i.e. the user should know before approximately when the simulations will be
statistically independent.
In order to further characterize the simulation, the ratio of the averaging time, T4 and the
transition time, T, will be defined as the times ratio, 3,

so that the bigger the times ratio, the lesser the importance that the transition will time will
have in the overall simulated time and thus the potential to exploit the benefits of the method
will be increased.

In his study, Krasnopolsky [2] estimates the speed-up in the whole simulation to be charac-
terized by the number of rhs, m; and the weight of the Poisson solution within the iteration, 6;
and the times ratio, 3, such that

m+ B5m —30(m —1)
where the second term estimates the speed-up in the iteration, P, ;. and the first term
extends the contribution of the iteration speed-up to the whole simulation. By doing so, by
computing the speed-up in a single iteration the speed-up of the whole simulation given a
times ratio can be estimated, being this the strategy followed by [2]. Moreover, given Eq. ,

an optimal number of rhs, m* is estimated by the study, which would maximize the overall

simulation speed-up,
356
ey —. 5
TV 530 ®)

3 IMPROVEMENTS IN ARITHMETIC INTENSITY WITH SpMM

Given the definition of Al as the ratio between the number of required floating point oper-
ations and data to be transferred from memory, and given that the amount of operations to
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perform cannot be modified much, it looks straightforward that the improvmements on Al in
the case of any kernel operation could be due to reductions in the amount of data transferred.
Thus, in the case of a sparse matrix-vector operation, if the sparse matrix A presents a repeated
block m times, e.g. a log, m symmetries [4] or m flow states [2], these SpMV can be transformed
into a sparse matrix-matrix operation in which the dense matrix has m columns.

By doing so, the amount of floating point operations to perform remains constant, n xnnz(A),
where n is the number of matrix rows, and nnz(A) is the number of non-zeros per row of the
matrix A; whereas the amount of data to communicate is reduced, as the sparse matrix has to
be transferred only once, instead of m times. By the definition of Al, this procedure will thus
increase it, leading to speed-up in the process.

SIES

Figure 2: Left: two SpMV are performed simultaneouslly as a bigger product with a block structured
matrix. Right: structure in which the two products are performed with a single call of A.

The difference between the two cases is illustrated in Fig. in which it is straigtforward
to observe that in the left structure, the sparse matrix A is called twice, whereas for the right
structure, there is only one call of A. Moreover, the calls to ui, us and retrieving the results of
both products will imply a similar cost and memory communication time.

As previously stated, A is characterized by nnz(A) and n, while u; has as well n entries.
Hence, the amount of data to communicate for a setup of m SpMV would be m(2n + nnz(A)n),
while for the SpMM with m rhs, the amount of data to communicate becomes 2mn + nnz(A)n,
with m only scaling the vectors but omitting the sparse matrix as it is only transferred once.
By doing so, the arithmetic intensity of these operations can be estimated, assuming perfect
temporal locality, as

nnz(A)mn
Al m rhs — ) 6
SPHILmThs T o n + nnz(A)n (6a)
nnz(A)mn
AIm SpMV — m( ( ) ’ (Gb)

2n +nnz(A)n)

and thus the speed-up obtained with the inclusion of the SpMM kernel compared to using the
classical SpMV is upper bounded by the ratio of the two arithmetic intensities,

m(2n + nnz(A)n)

2mn + nnz(A)n

; (7)

which depends on the density of the matrix, the number of rhs and the size of the problem.
The lower bound of the speed-up obtained can be computed assuming zero temporal locality
that can be interpreted as substituting nnz(A) by n, i.e. assuming the sparse matrix is actually
dense.

Pm,ub =
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4 TEST CASES

The method was tested in a differentially heated cavity filled with air at Ra=10'" using
the in-house code TermoFluids Algebraic (TFA) in which the algebraic kernels are implemented
within HPC? framework[6]. This flow will thus be governed by the non-dimensional semi-discrete
incompressible Navier-Stokes equations together with the energy equation with the Boussinesq
approximation, which following the notation of [5] reads

Mu, = 0, (8a)
o | ¢ B Duc+ QGepe + Of, = b
I + (115)11@ - m u; + cPpc + Qe =0, (8 )
deé. 1
Q dt + C(us)ec — WDOC = Oc, (8C)
in which f. = (0,Pr0,0)” is the Boussinesq approximation term. These equations were

advanced in time by use of a third-order Heun Runge-Kutta scheme implemented into the Navier-
Stokes equations using the methodology developed by Sanderse and Koren [7]. The timestep
was selected by use of a self-adaptive time-step in which the value was selected according to the
position within the stability region of the eigenbounds of the convective and diffusive operator
[8]. The Poisson equation is solved using a Jacobi preconditioned Conjugate Gradient as a proof
of concept, being solved for a fixed number of iterations in order to ensure that the obtained
results just depend on the parameters tuned and not in the complexity of converging the Poisson
equation.

As these test cases were run in a full high memory node of MareNostrum 5 GCC supercom-
puter, which consist of 2x Intel Xeon Platinum 8480+ 56C, 1024 GB of RAM memory; 2 MPI
processes with 54 OpenMP threads were launched so that two remaining CPUs were left for
threads.

To test how the parallel-in-time approach as well as the SpMM implementation would behave
under different conditions, three different test cases were implemented in which the mesh used
corresponded to a load of 400k cells/CPU (400k), 300k cells/CPU (300k), and 200k cells/CPU
(200k),.

Table 1: Meshes used for the different test cases of the differentially heated cavity.

Test case Ny N, N, Total number of cells (M)

200k 176 704 176 21.82
300k 201 804 201 32.40
400k 220 880 220 42.55

Moreover, in order to test the dependency of the density of the matrices, the Laplacian
operator has been discretized in such a way that it provides 7 non-zeros per row (7p), 13
non-zeros per row (13p), and 27 non-zeros per row (27p) as depicted in a two-dimensional
representation in Fig.

Hence, the analysis can be split into two parts. First of all, the study of the influence of the
number of non-zeros per row to the behaviour of the SpMM compared to the SpMV. On the other
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Figure 3: Two-dimensional representations of the stencil for 7p (left), 13p (center), 27p (right). The
shaded cells represent the first neighbors in all representations.

hand, the influence of the load of the node to this behaviour.

In order to study the influence of the discretization of the Laplacian operator, the three
different CPU loads (200k,300k,400k) will be studied with the three different discretizations
(7p,13p,27p), and the speed-up in the SpMM, iteration and the whole simulation for § values of
2, 20 and oo will be studied. In order to attain for different possibilities, the cases will be tested
for 1, 2, 4, 8 and 16 rhs for 200k,300k, and 1, 2, 4, and 8 rhs for 400k, as the 16 rhs case did
not fit in memory.

With regards to the speed-up of the performance of the implementation of SpMM, in Fig.
it can be observed that in all cases the speed-ups obtained are monotonically increasing with n.
Moreover, a clear trend indicating that P, spmm grows with nnz(A), as for all three cases studied
this behaviour is observed.

Concerning the 200k, the speed-up increases in a 5% for the 13p and a 23% for the 27p,
compared to the original first neighbour case with 16 rhs. In addition, for the 300k case with
16 rhs, these improvements are of 8% and 38%, respectively. In comparison, for 8 rhs, the 400k
case provides a 7% and 51% improvement, respectively. Note that observing Fig. 4| the trend
shows that the differences between 7p,13p,27p grow with m, so that the possible differences
observed for 16 rhs in the more loaded case could even be bigger.

Moreover, it can be observed that the results are still not saturated for any of the cases,
as P, spmy is still growing for all cases. This implies that with the current implementation the
saturation point of the SpMM surpasses the memory of a single MareNostrum5 GPP high memory
node.

Another important figure to discuss is the speed-up within the whole iteration, as it is the
value that would replace the term 5m/(5m —30(m — 1) in Eq. (4); which is shown in Fig. [f] As
a general trend, it can be observed that for all studied cases, the displayed values are smaller
than the speed-ups for SpMM, as the operations are now diluded in a set of other operations
(axpy, axty, dot) as well as lighter SpMM operations. Note that the speed-ups obtained now
for 400k with 8 rhs is similar to the speed-ups with 16 rhs obtained with the lower loads of the
CPUs. Regarding the behaviour of the different Laplacian discretizations (7p,13p,27p), the
improvements in all three cases for the biggest cases fitting in the memory of the node compared
to 7p are of approximately 17% for 13p and 50% for 27p. Nonetheless, as the differences grow
with a bigger number of rhs, for 400k it would be expected to obtain even better conditions in
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Figure 4: Speed-ups in SpMM for 200k (left), 300k (center), and 400k (right) for the test case studied.

the iteration speed-up with 16 rhs.

—e— 7p i —*— 7p
1.7
< 18p 1.8 18 —— 13p
1.6 —=— 27p —=— 27p
L5 1.6 1.6
314 T 3
A a; a;
4 1.4
1.3 L4
1.2
1.2 —— 7 1.2
1.1 —— 13p
—_—
1.0 1.0 27p 1.0
2 ) S 16 2 I S 16 2 1

n n n

Figure 5: Speed-ups in the whole iteration for 200k (left), 300k (center), and 400k (right) for the test
case studied.

Hence, it can be clearly seen that the better performance of the method will be obtained
with the 27p discretization. With the iteration speed-ups calculated, the estimated simulation
speed-up can be easily obtained for different 5 values so that the influence of the times ratio
can also be studied, as it is one of the most relevant parameters in a parallel-in-time simulation.
As in the previous results it has been obtained that the better discretization, for performance
purposes, is 27p, the presented results will just be with this case, analyzed for all 200k, 300k
and 400k.

As it can be seen in Fig. [6] for a bigger number of rhs the simulation speed-up decays for
finite B values, as the 8 — oo resembles the iteration speed-up figures, and it asymptotically
tends to a maximum value but it does not decay for any number of rhs. Following the trends
obtained for the SpMM speed-up (Fig. [4) and the iteration speed-up (Fig. , the simulation
speed-up increases with the load of the CPU. As the number of Poisson solver iterations is quite
high (550 iterations) given the problem size, the weight of the Poisson solver is expected to
be quite high, in order to estimate the simulation speed-ups as well as the optimal number of
rhs. For the 200k, the 1 rhs-weight of the Poisson solver (1wgt) is of 0.9346, while the 1wgt
for the 300k and 400k are of 0.9371 and 0.9346, respectively. This means that according to
Krasnopolsky [2] the optimal number of rhs should be placed in a really similar spot. For the
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sake of convenience, 6.,. = 0.935 for cases, as the values differ in a 0.2% between them. By
applying Eq. , the estimated speed-ups and optimal locations for all cases are displayed in
Tab. 2l

Table 2: Estimated speed-ups and optimal number of rhs for the 27p discretization (6 = 0.935).

B m* m=2 m=4 m=8 m=16

2 2 1.04 0.86 0.59 0.35
20 5 1.33 1.51 1.47 1.23
0o 00 1.39 1.73 1.96 2.11

As it can be observed in Fig. [6] the speed-up values that most resemble the estimated
optimal values are for 400k, with negligible differences for the 5 = 2 and 5 = 20 cases and slight
differences for m = 8 and  — oo. The estimated results generally overpredict the numerical
results obtained for 200k and 300k, for greater values of m, yet for the smaller values of m the
differences between estimated and calculated simulation speed-ups is also negligible. By doing
so, the estimation from Krasnopolsky [2] provides the best results for large number of non-zeros
per row, yet it can be considered as accurate for all sparse matrix densities as its difference is
almost none.

With regards to the optimal value, it is difficult to determine in the tested cases which would
be the optimal number of right hand sides to maximize the simulation speed-up. However, it
is clear that in all cases the optimal for f = 2 lies in the interval 2m* < 4, while for § = 20,
4 < m*8, in which the theoretical m* can be found in the predicted intervals. For the 8 — oo
case, as the speed-up value is growing constantly, the value of m* — oo is recovered.

—h— =2
—o— =20
—— -0

2 4 8 16 p 3 ] 2 4 8

Figure 6: Estimated speed-ups in the whole simulation for 200k (left), 300k (center), and 400k (right)
for the test case studied with the 27p discretization.

Furthermore, the results of the same discretization can be compared for different loads of the
node as in this way the position of the SpMM speed-up compared to the theoretical upper and
lower bounds can be analyzed. As it can be observed in Fig. [7] the dependency of the operation
speed-up compared to the CPU load is almost non-existent for 7p and 13p. On the other hand,
it is noticeable that for 27p, there is an improvement of the speed-up of the 400k compared to
the other two loads. Moreover, it is noticeable that for 7p, 27p the results are much closer to
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the upper-bound compared to the 13p discretization.
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Figure 7: Speed-ups in SpMM for 7p (left), 13p (center), and 27p (right) for the test case studied. The
dashed line indicates the theoretical upper-bound, while the dot-dash line indicates the lower bound.

5 CONCLUSIONS

In this study, a generalization of the parallel-in-time approach of Krasnopolsky [2] in the
totality of the SpMV operations in the algorithm is presented. By changing all SpMV for SpMM
operations, as done by Alsalti-Baldellou et al. [4], the outcome of the method should be im-
proved. Hence, in this approach, multiple flow states are run simultaneouslly in the same device
for shorter simulated times so that the transition time is run until the different flow states are
statistically independent, and then the averaging time is divided by a factor m, being m the
number of flow states. By doing this, the arithmetic intensity of the operations will increase as
the sparse matrix is only read once instead of m times, which leads to speed-ups [2] 4].

In order to test the new approach of the method, a differentially heated cavity of aspect ratio
4 filled with air, at Ra=10'" has been simulated with three different meshes (200k, 300k, 400k,
Tab. , in a single MareNostrum 5 CPP HighMem node so that different CPU loads have been
tested. Moreover, as the theory indicates that denser matrices will lead to bigger improvements
in the arithmetic intensity when applying the method, three different Laplacian operator dis-
cretizations have been tested (Fig. , in which the number of non-zeros per row was of 7, 13,
and 27. These runs have been performed for 1, 2, 4, 8 and 16 rhs, if fitting in memory. Thus,
for the finer mesh (400k) the simulation was run up to 8 rhs.

It has been observed that in all three discretizations and meshes, there is speed-up in both
SpMM and iterations (Figs. , with the SpMM values, and according to Fig. the results
are in between the lower and upper bounds and do not strongly depend on the CPU load.
Moreover, after extending these results to the whole simulation (Fig. @ for different times
ratios (8 = {2,20,00}), the theoretical speed-ups and optimal number of rhs from Egs. (4)),(5)),
respectively, are recovered with a tolerable margin of error for 400k, 27p. Hence, the obtained
results with the in-house code TermoFluids Algebraic match the results from Krasnopolsky [2].

In this line, future research lines include the application of this method to modern accelerators
with GPU’s which given their increased peak performance and memory bandwidths, which
makes them more suitable for sparse algebra and, eventually, for CFD. Moreover, as the biggest
downside of the method is the generation of the independent seeds. In order to treat this,
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different methods will be studied to improve the generation of uncorrelated initial conditions.
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