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Abstract. This article provides a summary of our latest research, where we investigate the
application of data-driven deep learning methods to simulate the dynamics of physical systems
that are governed by partial differential equations (PDEs). The main challenge is the long-term
temporal extrapolation for fluid dynamics problems that exhibit steep gradients and discontinu-
ities. We make use of deep learning techniques, specifically designed for time-series predictions
like LSTM, TCN, and Attention mechanism, as well as CNN. These methods are employed to
model the dynamics of systems primarily influenced by advection. We propose a combination
of a Convolutional Autoencoder (CAE) model for data compression and a novel CNN-based for
forecasts. These models take a series of high-fidelity vector solutions and predict the solutions
for the following time steps using auto-regression. To reduce complexity and computational de-
mands during both online and offline stages, we implement deep auto-encoder networks. These
techniques are used to compress the high-fidelity snapshots before feeding them into the fore-
casting models. Our models are evaluated on numerical benchmarks, such as the 1D Burgers’
equation and Stoker’s dam-break problem, to assess their long-term predictive accuracy, even in
scenarios that extrapolate beyond the training domain. The model that demonstrates the high-
est accuracy is subsequently used to simulate a hypothetical dam break in a river with real 2D
bathymetry. Due to space constraints, only a selection of results is showcased, with additional
findings available in our work [1] and the newer ones will also be presented in the talk. Our find-
ings indicate that the proposed CNN future-step predictor offers significantly accurate forecasts
in the considered spatiotemporal problems.
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1 Introduction

The process of obtaining numerical solutions of PDEs through traditional high-fidelity com-
putational solvers can be highly costly. Consequently, this approach becomes inefficient for
multi-queries applications like optimization and uncertainty quantification, where a large num-
ber of simulations are necessary for analysis. Reduced-order models (ROMs) serve as an effec-
tive alternative to these computationally demanding numerical solvers.

Deep learning models typically excel in interpolation scenarios, where they can make predic-
tions for unseen inputs that fall within the distribution of the training data. However, during the
inference stage of real-world applications, the input data may lie outside the distribution seen
during training. This situation is known as extrapolation. In such cases, deep learning models
may encounter large errors and even fail due to their inability to handle out-of-distribution in-
puts effectively. Some recent research has focused on predicting solution instances outside the
training domain for various fluid problems (Liu et al [2], Heaney et al.[3], Jacquier et al. [4]).

The remaining challenge lies in long-term temporal extrapolation for fluid problems char-
acterized by sharp gradients and discontinuities. Our study investigates convolutional architec-
tures (specifically LSTM, TCN, Attention mechanism, and CNN) to obtain accurate solutions
for time steps far beyond the training domain, focusing on advection-dominated test cases.

The subsequent sections are organized as follows. Section 2 provides details about the dataset
structure used for training and testing, followed by a presentation of the autoencoders for space
compression and the forecasting convolutional architectures. In Section 3, the models are tested
on the one-dimensional Burgers’ problem. For more results see [1]. Finally, section 4 presents
some concluding remarks.

2 Methodology

2.1 Dataset

The dataset is composed of T solution vectors/snapshots: vi with ns nodes (vi ∈ Rns) at
time-steps i ∈ {1, 2, . . . , T} obtained using a high-fidelity PDEs solver. For the autoencoder
models, the output is the reconstruction of the input, therefore the training and validation input
and output data are snapshot vectors vi. For the forecasting models (Figure 1), N samples are
used for training; in each sample, the input is a sequence of nt snapshots (lookback window =
nt): V = [vi−nt+1, . . . , vi−1, vi], with V ∈ Rns×nt , and the corresponding output is the vector
at the time-step immediately after the sequence end - vi+1 ∈ Rns .

For extrapolative testing (Figure 2), a sequence of nt vectors from the start of the dataset,
V = [v1, . . . , vnt−1, vnt ] ∈ Rns×nt is fed to the model to produce the vectors at all the sub-
sequent time-steps: [vnt+1, vnt+2, . . . , vT ] ∈ Rns×(T−nt) in an auto-regressive manner, i.e, first
only a single subsequent snapshot vnt+1 is predicted, which is then concatenated with previous
nt − 1 vectors and passed to the forecasting model to produce vector vnt+2. In summary, we
are using an auto-regressive approach to predict future vectors beyond the observed data. The
process involves concatenating previously predicted vectors to make subsequent predictions.
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Figure 1: Training and validation method.

Figure 2: Autoregressive testing method for forecasting models.

2.2 Non-intrusive reduced-order modeling( NIROMs)

NIROMs leverage autoencoders [5] to create data-driven reduced-order models, allowing
efficient prediction while avoiding the complexities of directly working with high-fidelity snap-
shots. An autoencoder learns the approximation of the identity mapping, χ: vi → viae such that
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vi ≈ viae and χ: Rns → Rns , where ns is the number of nodes in the solution vector vi. This pro-
cess is accomplished using a two-part architecture. The first part of the autoencoder network is
the encoder χe, which maps a high-dimensional input vector vi to a low-dimensional latent vec-
tor zi: zi = χe(v

i; θe) and zi ∈ Rm (m ≪ ns). The second part is called a decoder, χd, which
maps the latent vector zi to an approximation viae of the high-dimensional input vector vi: viae
= χd(z

i; θd). The combination of these two parts yields an autoencoder network of the form χ :
vi → χd ◦ χe(v

i). The restriction (dim(zi) = m) ≪ (n = dim(vi)) forces the autoencoder model
to learn the salient features of the input data via compression into a low-dimensional space.
Problems involving data of high spatial dimension use, generally, convolutional auoencoders
CAEs.

2.3 Forecasting Techniques

The dataset post compression by the encoder (χe) produces N samples of the form: Z =
[zi−nt+1, . . . , zi−1, zi] ∈ Rm×nt , zi+1 ∈ Rm which are used to train the following forecasting
models.

2.3.1 Long Short-Term Memory (LSTM)

LSTM [6] is a special type of recurrent neural network (RNN) that is well-suited for per-
forming regression tasks based on time series data. The main difference between the traditional
RNN and the LSTM architecture is the capability of an LSTM memory cell to retain informa-
tion over time and an internal gating mechanism that regulates the flow of information in and
out of the memory cell [7]. The LSTM cell consists of three parts, also known as gates, that
have specific functions. The first part called the forget gate, chooses whether the information
from the previous step in the sequence is to be remembered or can be forgotten. The second
part called the input gate, tries to learn new information from the current input to this cell. The
third and final part, called the output gate, passes the updated information from the current step
to the next step in the sequence.

2.3.2 Temporal Convolution Network (TCN)

The Temporal Convolution Network (TCN) operates based on two key principles [8]: The
network generates an output that matches the length of the input, and it prevents any future
information from leaking into the past. To ensure adherence to the first principle, the TCN
employs a 1D fully convolutional network (FCN). In this network, each hidden layer is the same
length as the input layer, and zero padding is introduced to maintain the length of subsequent
layers consistent with their predecessors. To uphold the second principle, the TCN utilizes
causal convolutions, which are achieved by padding only at the beginning of input sequences,
where the output at time i is convolved only with elements from time i and earlier in the previous
layer (Figure 3). A TCN also makes use of dilated convolutions that enable an exponentially
large receptive field.
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(a)

(b)

Figure 3: (a) 1D dilated filters convolving on the temporal dimension of vectors (b) 1D CNN
filters convolving on the spatial dimension of vectors.

2.3.3 A proposed Convolution Neural Network (CNN) for time forecasting

When convolving along the temporal axis, the (standard) TCN model uses information avail-
able from all the prior time steps (due to the large receptive field) to evaluate the next time step,
as sketched in Figure 3. The model takes in a sequence of nt vectors corresponding to a look-
back window of size nt : V = [vi−nt+1, . . . , vi−1, vi], with V ∈ Rns×nt . The filters convolve
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along the temporal axis for all the ns vector nodes since the nodes are passed in as channels.
However, the results produced from this model do not propagate beyond the training domain.
Therefore, another model is proposed here, where the dilated convolutions of the TCN model
convolve along the spatial axis, and thus uses the information available from (or correlation
between) the neighboring nodes to determine the future time-step value of the node. This model
takes in a sequence of nt vectors corresponding to a look-back window of size nt in a trans-
posed manner, such that the nt solution vectors are on separate channels: V T ∈ Rnt×ns , where
V = [vi−nt+1, . . . , vi−1, vi]. This model produces significantly better results than the TCN on
a temporal axis, but the causal padding and dilations employed are of no significance when the
convolution filter operates along the spatial axis. Another architecture for modeling the sys-
tem dynamics, with 1D convolutions and without any dilations or causal paddings is therefore
proposed.
The proposed forecasting model of CNN takes in a sequence of vectors with nt time-steps in a
transposed manner as its input: V T ∈ Rnt×ns , where V = [vi−nt+1, . . . , vi−1, vi], so that the
filter convolves on the spatial dimension of size ns, and the nt vectors lie on separate channels,
as shown in Figure 3. The CNN architecture (Figure 3) consists of X residual blocks (X is a
hyperparameter), in which the input to each block, after transformation (to make the channels
equal) from a 1D Convolution layer (kernel = 1 and channels = 1) is added to the output from
the block. A residual block consists of two convolution layers, each followed by a weight
normalization and a leaky ReLU activation layer.

2.3.4 Attention Mechanism

The attention mechanism is a sophisticated concept used in neural network architectures,
particularly for tasks like natural language processing and time series analysis. Unlike tradi-
tional RNNs and LSTMs, which struggle to capture long-range dependencies, attention allows
the model to dynamically focus on relevant parts of the input sequence. It operates through three
main components: queries, keys, and values. The model calculates a score for each key for the
current query, determining the relevance of each input element. These scores are normalized
using a softmax function to produce attention weights, which indicate the importance of each
input element. The final output is a weighted sum of the value vectors, aggregating the most
relevant information from the input sequence [9] .

The primary benefits of the attention mechanism include its ability to capture long-range
dependencies and improve interpretability by highlighting which parts of the input the model
focuses on. This mechanism enhances the model’s performance by ensuring that the most
pertinent information is prioritized during each step of the sequence processing. Additionally,
attention provides insights into the decision-making process of the model, making its operations
more transparent and understandable. By allowing the model to selectively prioritize different
parts of the input sequence, the attention mechanism has revolutionized sequence modeling,
leading to significant improvements in tasks such as machine translation, text generation, and
time series prediction [10].
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3 Numerical tests: 1D Burgers’ problem

The test case involves the one-dimensional Burgers’ equation along with the initial and
Dirichlet boundary conditions given by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂t2
(1)

x ∈ [0, L], u(0, t) = 0 (2)

u(x, 0) ≡ u0 =
x

1 +
√

1
t0
exp(Rex2

4
)

(3)

where the length L = 1 and the maximum time Tmax = 2. The solutions obtained from the
above equations produce sharp gradients even with smooth initial conditions if the viscosity ν
is sufficiently small. The analytical solution to the problem is given by:

u(x, t) =
x

t+1

1 +
√

t+1
t0

exp(Re x2

4t+4
)

(4)

where t0 = exp(Re
8
) and Re = 1/ν. High-fidelity solution vectors are produced by directly

assessing the analytical solution across a uniformly discretized spatial domain with 200 grid
points (ns = 200) at 250 uniform time-steps (T = 250) for two distinct Revalues: 300 and
600. These solution vectors are subsequently utilized to train the autoencoder and forecasting
models.

For the autoencoder training, 200 solution vectors are randomly selected at different time
steps, while the remaining 50 are used for validation. The training set for the forecasting model
consists of the first 150 compressed samples, with each sample containing nt consecutive solu-
tion vectors (i.e., the lookback window equals nt), where nt is a hyperparameter. The validation
set includes the next 10 samples. For testing, nt latent vectors from the beginning of the dataset
are input into the forecasting model to predict the subsequent time steps using auto-regression
(see Table 1).

To evaluate the performance of the previous architectures, the following metrics are used:
Mean Squared Error (L2 norm) MSE: The average of the square of the difference between
the actual and predicted values over N samples. Mean Absolute Error ((L2 norm) MAE, and
{Relative L2 Norm Error: The relative L2 norm error (referred to as error).

In the following, the encoder comprises two layers with 8 and 32 channels respectively, and
a latent dimension of 50. The 1D convolution has a kernel size of 3, and each layer includes
padding of size 1. All the hidden layers employ swish activation.

3.1 LSTM model

Various sets of hyperparameters considered for the LSTM network, for both Re= 300 and
600 are summarized in Table 2.

7



Soulaı̈mani A., Bhatt P., Kumar Y., Moosa M.

Dataset Samples Input Output

Training

1 [z1, . . . , znt−1, znt ] znt+1

2 [z2, . . . , znt , znt+1] znt+2

... ... ...
150 [z150, . . . , znt+148, znt+149] znt+150 (training end)

Validation
151 [z151, . . . , znt+149, znt+150] znt+151

... ... ...
160 [z160, . . . , znt+158, znt+159] znt+160

Testing 1 [z1, . . . , znt−1, znt ] [znt+1, . . . , z249, z250]

Table 1: Burgers’ problem: Training, Validation and Testing dataset.

(a) Re = 300 (b) Re = 600

Figure 4: Burgers’ problem: L2 relative error of the autoregressive predictions with increasing
time for Re = 300 (a) and Re = 600 (b) for the LSTM model.

The models are trained in batches of size 15. The model with the least validation loss has a
lookback window of size 10 and a single LSTM layer with hidden dimension 50 for both Re=
300 and 600. The extrapolation error plots (Figure 4) obtained from these models show that the
LSTM model accurately predicts the solution vectors for time steps within the training domain
(i ≤ 150), but the solution does not change for time steps outside the training domain, and so
the relative error increases drastically.

3.2 TCN model

The TCN model consists of multiple TCN blocks, each with the same kernel size and number
of channels, but with dilations increasing by a factor of 2 in subsequent blocks. The hyperpa-
rameters for the TCN network for both Re= 300 and 600 are summarized in Table 3.

For Re= 300, the best model has 3 temporal blocks, each having 64 channels, whereas, for
Re= 600, it has 2 TCN blocks with kernel size 3 and 64 channels each. The error plots (Figure
6) derived from these models suggest that the TCN model precisely predicts the solution vectors
for time steps within the training domain, but its accuracy diminishes after training concludes.
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Hyperparameters Values

Sequence length (nt) 5, 10, 20
LSTM layers 1, 2, 3

hidden/latent dimension (m) 12,25,50
Loss Function MSE

Table 2: Burgers’ problem: Hyperparameters for the LSTM network.

Hyperparameters Values

Sequence length (nt) 5, 10, 20
TCN block channels [32, 32], [64, 64], [32, 32, 32], [64,64,64]
latent dimension (m) 12, 25, 50

Kernel Size(k) 3, 5, 7, 9
Loss Function MSE

Table 3: Burgers’ problem: Hyperparameters for the TCN network.

(a) Re = 300 (b) Re = 600

Figure 5: Burgers’ problem, L2 relative error of the auto-regressive predictions with increasing
time for Re = 300 (a) and Re = 600 (b) for the TCN model (over time).

Interestingly, when the same model architecture is applied to the input sequence, such that the
dilated 1D convolutions spread along the spatial axis with each solution vector on a distinct
channel, it yields accurate forecasts, even beyond the training domain. This finding promotes
the creation of a more straightforward predictive/forecasting model, one that is free of dilations
and causal padding, as the exponentially expanding receptive field becomes redundant.

3.3 The Attention Mechanism

Our experiments, detailed in Table 4, tested configurations to ensure proper attention mech-
anism functioning. We chose the number of attention heads as a divisor of the latent dimension,
varying both to find optimal performance.
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Hyperparameters Values

Sequence length (nt) 5, 10, 20
Number of Attention Heads 1,2,5,10,25

latent dimension (m) 12,25,50
Loss Function MSE

Table 4: Burgers’ problem: Hyperparameters for the Attention mechanism.

(a) Re = 300 (b) Re = 600

Figure 6: Burgers’ problem, L2 relative error of the auto-regressive predictions with increasing
time for Re = 300 (a) and Re = 600 (b) for the Attention model (over time).

The best setup was 10 heads and a latent dimension of 50, significantly outperforming LSTM
and TCN networks in capturing temporal dependencies. The attention mechanism helped focus
on relevant input parts, improving learning and prediction. However, the model struggled to
extrapolate time steps beyond the training domain, limiting its generalization to unseen future
data.

3.4 The proposed CNN model

The CNN model consists of two residual blocks, thus compressing the spatial dimension to
50 in the latent vector. Each block possesses the same kernel size and number of channels. The
hyperparameters for the CNN network for both Re=300 and 600 are summarized in Table 5.

The model with the least validation loss has a lookback window of size 10, and each of its
blocks has a kernel size of 3 and 50 channels for both Re= 300 and 600. It is clear from the
extrapolation and error plots (Figure 7 and 8) that the CNN model accurately models the latent
dynamics, and predicts solution vectors accurately for time steps beyond the training domain.

4 Conclusion

This study proposes a Convolutional Autoencoder (CAE) model for compression and a novel
CNN future-step predictor for forecasting vector solutions for subsequent time steps. The ap-
proximation accuracy and time extrapolation capabilities of the model are evaluated using the

10



Soulaı̈mani A., Bhatt P., Kumar Y., Moosa M.

Figure 7: Burgers’ problem: Extrapolative auto-regressive predictions using the proposed CNN
model, for Re= 300 and for time-steps = 180, 200 and 220; the training end time-step = 160.

(a) Re = 300 (b) Re = 600

Figure 8: Burgers’ problem: L2 relative error of the auto-regressive predictions using the CNN
model with increasing time for Re = 300 (a) and Re = 600 (b).

Burgers’ problem. More results can be found in [1]. The well-known models built especially for
time-series forecasts (LSTM and TCN), produce acceptable results within the training domain,
but the solution stops changing during extrapolation. However, when the dilated convolutions
propagate on the spatial axis, the models produce good predictions for extrapolation as well.
Additionally, since the proposed CNN model uses convolutions, it allows parallel training and
evaluation for long input sequences, unlike LSTM. Future work will enhance the model by
integrating physical mechanisms during the forecasting phase.
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