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ABSTRACT  

Using CPTu profiles for subsoil characterisation, transformation equations must be used to obtain the hydro-mechanical 

properties for structures and infrastructure designing. Additionally, the uncertainty and the spatial variability of 

measured parameters must be taken into account for a reliable geotechnical design. In this work, we used a Stochastic 

Simulation approach to define reliable 3D models of two geotechnical designing variables for granular soils (friction 

angle–’ and the Darcy permeability coefficient–k) from tip resistance (qc), sleeve friction (fs), and pore pressure (u2) 

profiles. The selected method – the Sequential Gaussian Co-Simulation (SGCS) – provided reliable optimized 3D 

models of the spatial distribution of the variables of interest and allowed quantifying the propagation of the estimation 

uncertainty associated with the raw measurement models through the transformation equations. Overestimation (OE) 

and Underestimation (UE) percentages for a confidence interval of 68% were calculated throughout the 3D model: 

granular soils showed a larger uncertainty than fine soils concerning the measured variables (qc, fs, and u2). In granular 

soils, the measured variable uncertainty varies up to 100% but the derived variables show different behavior: ’ shows 

UE and OE less than 25% while k reaches 100%. These differences in the propagated uncertainties depend on the 

transformation equations and the measured variable dependence.  
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1. Introduction 

The assessment of the spatial variability and 

uncertainty of subsoil properties is crucial for civil and 

environmental engineering and mining purposes. This 

implies that reliable subsoil models of lithotypes and 

hydro-mechanical variables need to be defined properly. 

In doing this, it must be assessed to both (1) the inherent 

spatial variability of natural material properties and (2) 

the transformation equations from measured to design 

variables. Both sources of uncertainties are 

encompassed by the propagated uncertainty (PU).  

In the last forty years, several geostatistical methods 

have been implemented to take into account non-

Gaussian distributions, co-regionalized variables, 

geographic trends, and external drift that come from 

complex 3D spatial datasets, all based on the 

assumption of spatial cross-correlation among 

measurements. This paper proposes a geostatistical 

simulation approach, based on the Sequential Gaussian 

Co-Simulation (Di Curzio et al., 2024). In this study, the 

PU assessment is focussed on the granular soil variable 

that is the friction angle ’, based on measured CPTu 

profiles (i.e., qc, fs, u2). The soil behavior type Index 

(ISBT) was also calculated to identify granular lithologies 

within the studied subsoil domain. These measurements 

are located in a portion of Bologna district (Italy) by the 

Emilia Romagna Regional Office for Territorial 

Protection and Development (Vessia et al., 2020).  

The results will be shown as estimated values and 

the propagated uncertainties for each variable within the 

3D continuous subsoil model. Furthermore, the ’ 

propagated uncertainty will be compared with the 

measured variables’ through the quantile analysis.   

2. The multivariate stochastic simulation 

In this section, the numerical method used to 

calculate the estimated values and the uncertainty 

related to the friction angle derived from CPTu profiles 

is illustrated. The Sequential Gaussian Co-Simulation 

(SGCS) method was adopted hereinafter (Gooverts 

1997, Chilès and Delfiner 2012). It is the multivariate 

version of the Sequential Gaussian Simulation approach 

(SGS). 

The SGCS was applied to propagate the uncertainty 

of ’ soil property, through the Linear Model of Co-

regionalisation (LMC) (Journel and Huijbregts 1978). 

This model takes into account the multivariate spatial 

correlations between the study variables through a 

symmetric matrix of direct (diagonal) and cross (out of 
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diagonal) variograms (Castrignanò and Buttafuoco 

2004).  

 In SGS, the process is repeated several times by 

random seeds and through different paths crossing all 

nodes of the simulation grid only once. As a result, 

several equiprobable representations of the spatial 

distribution of the considered variable are obtained, 

namely realizations, so providing a statistical 

distribution at each node of the grid, instead of one 

estimated value and the corresponding error (i.e., as in 

kriging methods). Owing to the assumption of Gaussian 

spatial behavior, the variables that do not follow the 

Gaussian distribution are transformed into Gaussian 

ones by the anamorphosis function. Then, the form of 

the probability distribution function is fully known, 

once the mean and standard deviation are determined 

through ordinary co-kriging. 

As in this work we dealt with a multivariate case, the 

Kriging estimator in Eq. (1) is moved to the Co-Kriging 

one. In this case, the simulation relies on the fitting of a 

Linear Model of Coregionalization (LMC) to the matrix 

of all (both direct and cross-) experimental variograms 

of the considered variables (i.e., qc, fs, and u2): 

(Wackernagel 2003, Castrignanò et al. 2015, Di Curzio 

et al. 2019, Vessia et al. 2020a, 2020b): 

Γ(h) = ∑ Bugu(h)
NS
u=1  (1) 

where gu (h) is the spatial structure standardized to 

the unit sill, u is the spatial scale, Bu is the 

Coregionalization matrix of the LMC partial sills 

corresponding to the scale u, which is symmetric and 

semi-definite positive, Γ(h) is the n x n matrix with 

direct variograms (i.e., diagonal elements) and cross-

variogram (i.e., non-diagonal elements) modeled as a 

linear combination of N_S basic variogram functions,  

being NS total number of spatial scales, and h is the lag. 

In this study, the Linear Model of Coregionalization 

was fitted to the matrix of experimental direct and 

cross-variograms of the input data, and one thousand 

realizations that honor the experimental data were 

provided.  

These realizations not only correspond to the same 

linear co-regionalisation model but also reproduce the 

same experimental histogram. In addition, their 

repetition provides a visual and quantitative measure of 

spatial uncertainty (Goovaerts 1996). Thus, these 

realizations through the equations of transformation 

gave the derived distributions of the soil properties at 

any point and were used to calculate some quantile 

values and then confidence intervals of predictions.   

In this study, raw measurements of qc, fs, and u2, 

showing skewed distributions,  were transformed 

through Gaussian Anamorphosis (Chilès and Delfiner 

2012), which consists in estimating a function 

converting a standardized Gaussian variable (Y) into a 

variable (Z=Φ(Y)), whatever its statistical distribution, 

through a Hermite polynomial expansion Hi(Y) 

truncated at a finite number of terms: 

Φ(Y) = ∑ ΨiHi(Y) (2) 

where, Ψ_i are the coefficients of the Hermite 

polynomials to be estimated. 

Once defined the Gaussian Anamorphosis function, 

the transformation from a raw into the standardized 

gaussian variable is performed by inverting the function, 

as follows: 

Y = Φ−1(Z) (3) 

The selected simulation domain has a cell size equal 

to 500x500x0.5 m. All the geostatistical analyses have 

been performed using Isatis 2018, whose results have 

then been visualized through Isatis.neo 

(www.geovariances.com/en/software/isatis-neo-

geostatistics-software/). 

In this paper, 1000 realizations were calculated: this 

number was selected based on the convergence of the 

total estimation variance to an approximately constant 

value for many simulations greater or equal to 1000.  

Then, we calculated the three-dimensional expected 

values of both input and design variables. 

 

3. From CPTUs to friction resistance 

Starting from the set of qc, fs, and u2 simulations, the 

soil behavior type Index ISBT (Robertson 1990) has been 

calculated, at first.  

This index enables identifying the lithological class 

of the investigated soil through the combination of the 

three variables measured with CPTUs, according to the 

updated equation (Robertson 2009) of the normalized 

index ISBTn: 

ISBTn = [(3.47 − log(Qtn))
2

+ (logFR + 1.22)2]
0.5

 (4) 

where, Qtn = (
qt−σv0

Pa
) ∙ (

Pa

σ′v0
)

n
 is the normalized tip 

resistance, FR =
fs

qt−σv0
∙ 100% is the friction ratio, qt =

qc − u2(1 − a), coefficient a equal to 0.8 (i.e., average 

value), and n = 0.381 ∙ Ic + 0.05 ∙ (
σ′

v0

Pa
) − 0.15, Ic is the 

non-normalized soil behaviour type index according to 

Robertson (1990), whereas ’v0 and v0 are the effective 

and total lithostatic stresses at each depth, respectively. 

The relation between ISBTn values and the classes of 

the soil mixtures is illustrated in Table 1.  

 

Table 1.  Soil behaviour type index classes (Robertson 

2009). 

Soil Behavior Type ISBTn Class 

Sands – clean sand to silty sand 1.31-2.05 SBT3 

Sand mixtures – silty sand to sandy 

silt 
2.05-2.60 SBT4 

Silt mixtures – clayey silt to silty 

clay 
2.60-2.95 SBT5 

Clays – silty clay to clay 2.96-3.60 SBT6 

 

These classes were used to subsoil volume into 

subdomains, varying from SBT3 to SBT6.  

After the ISBTn was calculated, the design variables 

derived from the CPTU profiles were derived.  

For sand-like soils (i.e., ISBTn < 2.60), Robertson and 

Campanella (1983) suggested Eq. (5) to estimate the 

peak friction angle (ϕ', in °) for uncemented, unaged, 



 

moderately compressible, predominately quartz sands, 

based on calibration chamber test results: 

tan(ϕ′) =
1

2.68
[log (

qc

σ′
vo

) + 0.29]  (5) 

Furthermore, the hydraulic conductivity (k, in m/s) 

was drawn from the ISBTn through the following 

expression: 

k = {
10(0.952−3.04∙Ic)   when 1.00 < ISBTn  3.27

10(−4.52−1.37∙Ic)     when 3.27 < ISBTn <  4.00
  (6) 

it is valid for both granular and fine soils, as shown 

by the soil behavior type index values.  

Hereinafter, we focused only on the granular soils. 

Thus, the propagated uncertainty of k and ’ were 

studied only in those portions of the total subsoil 

volume where SBT3 and SBT4 lithological classes were 

detected.  

4. Indicators of the uncertainty propagation 

To quantify the propagated uncertainty the expected 

values and upper (UL) and lower limits (LL) related to 

the confidence interval of 68% (that is the expected 

value plus or minus one standard deviation,  

respectively) were calculated for all the simulated and 

calculated variables. At this stage, the authors did not 

clean up data (i.e. from outliers) but considered a 

reduced confidence interval compared with the 

commonest 95%. 

The LL68% and UL68% were directly calculated 

from the 1000 realizations of the back-transformed 

variables using the Anamorphosis functions previously 

calculated. Then, from LL and UL values, considering 

z(x) the estimated value of each variable at each point of 

the grid over the studied volume, the Underestimation 

(UE) and Overestimation (OE) percentages were 

computed, according to the following equations: 

UE=|z(x)-LL|/(z(x))% (7) 

OE=|z(x)+UL|/(z(x))% (8) 

These parameters measure the distance between the 

mean of the predictions and the corresponding limits of 

their confidence interval at each location, providing a 

quantification of the local uncertainty of prediction. 

Due to the high heterogeneity of the soil mixtures in 

the studied territory, the uncertainty propagation was 

analyzed within lithological subdomains, detected 

through the ISBT index, that is ISBT < 2.6 for granular 

soils, and ISBT > 2.6  for fine soils.  

Additionally, the main quantiles of the qc, fs, u2, k, 

and ’ variables were listed: Q1 (25%), Q2 (50%), and 

Q3 (75%).   

Since input and output variable estimated 

realizations have seldom the same units, specific 

indicators were defined to compare the statistical 

variability and assess quantitatively how the uncertainty 

propagates through the transformation equations. 

Whenever Gaussian variables are considered, the 

Coefficient of Variation is a descriptive measure of 

relative dispersion: 

𝐶𝑜𝑉 =
𝜎

𝜇
 (9) 

where  is the mean value of the sample. For 

distributions which are no-normal distributed, the 

coefficient of quartile variation (Zwillinger and 

Kokoska 2000) is define as follows: 

𝐶𝑄𝑉 =
𝑄3−𝑄1

𝑄3+𝑄1
 (10) 

where Q1 and Q3 are the 25% and 75% quartiles, 

respectively. This latter is a robust measure of relative 

dispersion especially in skewed and leptokurtic 

distributions (Bonett and Seier 2005). 

5. Study area and dataset  

The study area is located in Emilia Romagna Region 

(Italy), in the Po plain eastwards of Bologna, where 

hundreds-of-meter of alluvial deposits are present. 

These deposits are not layered but they are 

undifferentiated mixtures of sandy, gravelly, and silty-

clayey soils (Fig. 1). According to ISPRA (2009a, 

2009b), these deposits come from different geological 

bodies: the fine silty-sandy deposits belong to flooding 

plains, whereas coarser soils came from alluvial fans 

and paleo-channels. The finer deposits are lacustrine 

lenses. More details about the geological features of this 

area can be found in Vessia et al. (2020b), and Di 

Curzio and Vessia (2021). 

 

 
Figure 1. Map showing the location of the study area as 

well as the CPTUs’ distribution within the selected domain.  

 

The dataset used in this research consists of 182 

CPTUs performed across an area with an extension of 

900 square kilometers and investigating a volume of 92 

km3 (with a depth of 30 m). These CPTu profiles have 

been collected in a comprehensive database by the 

Regional Office for Territorial Protection and 

Development of the Emilia-Romagna region 

(http://geoportale.regione.emilia-romagna.it/it), and 

subsequently made available by Di Curzio and Vessia 

(2021). 

6. Results 

The main features of the Linear Model of 

Coregionalization used in the SGCS method are listed in 

Tab. 2 to describe the spatial complex variability 

structures of the measured parameters (qc, fs, u2) that 

were transformed into Gaussian ones by the 



 

Anamorphosis function. A nested directional LMC was 

defined as consisting of a linear combination of scale-

dependent variabilities: in the horizontal plane, where 

an isotropic variogram model was assumed, two 

spherical structures at two different ranges were 

estimated (1200 and 12000 m, respectively). 

In the vertical direction, three spherical structures 

were included with metrical ranges and a K-Bessel 

function with a long-range greater than the maximum 

size of the study area. The presence of a local trend 

along the study depth is caused by the lithostatic 

increasing stress that influences the measured 

mechanical parameters. Then, the K-Bessel structure 

was also considered. 

Table 2. Features of the Linear Model of 

Coregionalization (LMC) related to the Gaussian 

transformed variables. 

Variables 
Horizontal isotropic 

LMC structures 
Range (m) 

gqc, gfs, gu2 
Spherical  

Spherical 

1200 

12000 

Variables 
Vertical anisotropic 

LMC structures 
Range (m) 

gqc, gfs, gu2 

Spherical  

Spherical 

Spherical 

K-Bessel 

2 

6 

12 

>100 

 

The SGCS approach provides 1000 three-

dimensional realizations of the raw measurements and 

then the same number of realizations of the output 

variables. Figs. 2 show a 3D subsoil volume of the 

expected values of 1000 realizations of the back-

transformed measured values. 

As can be noted from Figs. 2a,b, higher estimated 

values of qc and fs correspond to a granular mixture as 

illustrated in Fig. 2d, through the ISBTn values lower than 

2.6 (see Tab.1). Granular soils are recognised in the blue 

area at the bottom of the subsoil model and the green 

ones atop and at the bottom of the 3D model. 

Figs. 3a-f show the Overestimation and 

Underestimation percentage of the measured variables. 

Fine soil mixtures show much lower OE and UE values 

than the granular ones. The confidence interval herein 

chosen is the 68%, which means that 32% of the 

variability is not taken into account. The reason for this 

choice is the presence of a large number of outliers that 

were not eliminated a priori, and the need to study the 

propagation of the uncertainty by comparing measured 

and calculated uncertainties.  

On the bottom of the model, where sandy soils are 

found, the qc (Fig. 3c,d) shows an uncertainty from 75% 

to 100%, over and under estimations. This is caused to 

the larger dispersion of the tip resistance in measured 

profiles for coarse soils. However, on the top of the 

model, where the granular soils becomes finer, that is 

mixture of sands and silts, the uncertainty reduces and 

varies from 37% to 62% in both under and over 

estimations. The sleeve friction fs, in Fig. 3c,d shows a 

lower uncertainty, varying from 37% to 62% for both 

UE and OE values but atop the model, some areas near 

the border show uncertainty as large as about 100%.  

Concerning the measured pore pressure u2, its 

uncertainty is almost everywhere very large (from 75% 

to 100%) due to the large uncertainty of these measures 

in soil mixtures. In three areas where silt and clays are 

detected, its uncertainty reduces up to 25% - 50% (Fig. 

3e,f).  

In Figs. 4a,b the estimated models of ’ and k are 

reported. Both variables show higher values where 

granular soils are detected. Taking into account only the 

granular soil classes SBT3 and SBT4, we can see that 

  

 

a) b) 



 

c) d) 
Figure 2. Expected values of the measured variables: qc, fs, and u2 (a, b, c) and the calculated mean value of ISBTn(d). 

 

 

a) b) 

c) d) 

e) f) 
Figure 3. Overestimation and Underestimation values of the measured variables: qc, fs, and u2 
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a) b) 

c) d) 

d) e) 

Figure 4. Expected values of the derived variables: friction angle ’ (a) and Darcy’s coefficient k (b) and Figure 3. 

Overestimation and Underestimation values of ’ (b,c) and k (d,e).  

 

 

 

’ shows UE and OE lower than 37%. The friction 

angle derives from the qc, whose uncertainty is much 

larger than the ’ one. Especially atop the model, the 

uncertainty falls under 12%. Such a reduction in the 

uncertainty depends on the calculation formula, Eq. (5). 

The dependence of ’ to the log(qc) was responsible for 

this uncertainty reduction in output.  

On the contrary, the Darcy coefficient k, for granular 

soils shows large UE values, of about 100% and less 

than 37% for OE values. K depends on Ic, meaning that 

it is a function of a complex uncertainty combination of 

fs, u2, and qc. Additionally, k shows an asymmetric 

distribution towards the high values. It is calculated by 

two equations that do not properly depend on the 

granular lithological classes (see Tab. 2).  

However, k values are known with a low precision, 

of one order of magnitude, thus 100% uncertainty, in 

some areas of the 3D subsoil model, can be accepted. 

 

Table 3. Quantile indicators of the measured and 

calculated variables for SBT3 litho-class. 

Variable Q1 Q2 Q3 CoV CQV 

qc (MPa) 2.31 11.79 28.92 0.64 0.77 

fs (MPa) 0.056 0.14 0.23 0.64 0.63 

u2(MPa) 0.029 0.081 0.23 0.65 0.29 

’ (°) 39.93 42.83 44.46 0.047 0.04 

k (m/s) 2.710-6 1.810-5 1.410-4 1.43 0.44 

 

Finally, the uncertainty of the measured and 

calculated variables within the whole lithological 



 

classes SBT3 and SBT4 was calculated in Tab. 3 and 4, 

through the CoV and the CQV indicators.  

As shown in 4th and 5th column of Tab. 3, in sandy 

soils the starting uncertainty considering the subdomain 

is very high (about 65%) for the three input variables, 

while the uncertainty in terms of CoV is very high for k 

corresponding to 143%, while for ’ it is about 5%. The 

CQV shows lower values for u2, ’, and k. This 

confirms the robustness of CQV against the tails where 

there are outliers. In this study the outliers were not 

eliminated, thus CQV works better than CoV to 

measure the propagated uncertainty. 

In Tab. 4, the uncertainty of SBT4, that is the silty 

sand was measured. The CoV and CQV show lower 

values than in SBT3.  

 

Table 4. Quantile indicators of the measured and 

calculated variables for SBT4 litho-class. 

 

Again, the CQV values are lower than the CoV. 

CQV values, in the case of ’, give 4% and 5%, for 

SBT3 and SBT4, respectively. It is very low and it is 

convenient compared with the laboratory measurements. 

Instead, k uncertainty corresponds to 100% if the tails 

are considered while its value reduces when CQV is 

calculated. This latter is 44% and 61% in SBT3 and 

SBT4, respectively. Then, the propagated uncertainty is 

shown to be less than the measured variable uncertainty 

when the tails of the distributions are disregarded.  

The CoV, in this case of 1000 realization, can be 

representative of the uncertainty of the whole sample of 

data.  

7. Conclusions 

The application of the Sequential Gaussian Co-

Simulation method to CPTu data through fitting a 

Linear Model of Coregionalization enabled us to assess 

the uncertainty propagation through empirical equations 

to derive design variables (k, and ’) from measured 

data (qc, fs, and u2).  

The results show: 

1. for granular soils, the uncertainty propagation 

heavily depends mostly on the transformation 

expressions in granular soils; 

2. ’ shows a very low uncertainty than qc (5% 

against 64%); 

3. UE and OE can be used to compare the 

confidence intervals of both measured and 

calculated variables but they are affected by the 

variable distribution tails; 

4. CoV and CQV can be fruitfully used to describe 

the whole uncertainty of lithological classes. 

 

The SGCS can be used to quantitatively assess the 

uncertainty propagation of other design variables but 

further analyses are needed to investigate the role of the 

outliers on the confidence intervals of the derived 

variables. 
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