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Abstract. The fluid-flexible-structure interaction (FFSI) is characterized by the large 

deformation, the thin structure, and the complex of the flow field. Accurately simulating FFSI 

poses three challenges, which are the reproduction of thin structure, the capture of moving 

interface, and the numerical stability of multi-physics field coupling, respectively. In this study, 

the FFSI is simulated by the smoothed particle hydrodynamics (SPH) because of its natural 

advantage in dealing with the moving interface. The shell model with single-layer particles[1] 

is introduced into SPH to simulate the thin flexible structure. The truncation error caused by 

the single-layer boundary is modified by the normal flux approach[2]. κ-ε turbulence model is 

introduced into SPH to enhance the numerical stability and capture complex flow details. In 

addition, other techniques or models that ensure the efficiency and stability of the calculation 

are used in this study, including PST (particle shifting technique), δ-SPH method, and GPU 

(graphics processing unit). The flows around the single filament are simulated to verify the 

accuracy and stability of the current FFSI algorithm based on the SPH method.  
 

1 INTRODUCTION 

Fluid-flexible-structure interaction (FFSI) is widespread in nature and engineering practice, 

such as the flapping of flags in the wind, the swaying of the aquatic plants with the current, the 

vibration of high-voltage transmission lines in the wind, the heart valve response in blood flow, 

the oscillation of underwater cables induced by tides, and so on. FFSI is one particular form of 

fluid-structure interaction (FSI), which refers to the mutual coupling between moving fluid and 

thin flexible structure. In FFSI, the force of the fluid is exerted on the thin flexible structure to 

cause it to deform, and the deformed flexible structure affects the fluid boundary and thus 

changes the flow field. One of the main features that distinguishes FFSI from FSI is that the 

thin flexible structure has small bending stiffness and is prone to large deformation when 

interacting with the fluid, making the FFSI problem nonlinear and the coupling strong [3].  
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In recent years, the rapid development of computer technology has greatly aided the research 

of FFSI problems through computational simulation methods. Among them, the smoothed 

particle hydrodynamics (SPH) is a very suitable method for simulating FFSI because of its 

meshless advantage in capturing the moving interface and large deformation within a unified 

framework [4].  A large number of studies have focused on the SPH-FEM coupling application 

[5–8], that is, using the SPH method to solve the fluid dynamics and the FEM method to solve 

the structural dynamics. However, the SPH-FEM coupling method is limited due to the 

extremely high computational cost in the contact searching process used to recognize the 

contact interface between fluid and structure [5]. In addition, once the structure undergoes large 

deformation, it needs to be re-meshed, which will increase the algorithm complexity and the 

computational cost. The works of a unified SPH framework can be found in the simulation of 

FSI problems [9–14], where the structure is treated as a thick beam model. As mentioned before, 

the main feature of FFSI problems is the thin flexible structure, which will undergo large 

deformation due to the hydrodynamic force acting on it. There is a significant knowledge gap 

in solving FFSI problems using the purely and fully SPH method within a unified framework, 

in which the structure is considered as the SPH thin shell model. As for the SPH method 

simulating the thin structure, Wu et al. [1]  made great improvements to the shell model with 

the reduced-dimensional SPH method while Li et al. [2] proposed a model to calculate the 

information of fluid particles near the single-layer particle wall boundary. Inspired by the above 

works, this study combines methods of the shell structural model and the single-layer effect in 

fluid to apply the proposed pure SPH algorithm in FFSI simulations. 

The paper is structured as follows: Section 2 presents the numerical methods, with a focus 

on SPH discretization, fluid dynamics, and shell structural dynamics. Section 3 is dedicated to 

presenting some simulation results of the filament. Finally, Section 4 offers the conclusions of 

the study. 

2 METHODOLOGIES 

2.1 SPH method 

In the general SPH discretization, the field function f(xa) and its gradient ( )af x  of particle 

a located at the spatial coordinate xa can be approximated by kernel function W and its gradient 

W [15,16]. 

𝑓(𝒙𝒂) = ∑ 𝑓(𝒙𝒃)𝑊𝑎𝑏𝑉𝑏𝑏   (1) 

𝛻𝑓(𝒙𝒂) = ∑ 𝑓(𝒙𝒃)𝛻𝑎𝑊𝑎𝑏𝑉𝑏

𝑏

 
(2) 

where a and b indicate a pair of interacting particles; xb is the spatial coordinates of the 

neighboring particle b; 𝑉𝑏 is the volume of particle b, 𝑉𝑏 = 𝑚𝑏/𝜌𝑏; 𝑚𝑏 and 𝜌𝑏 are the mass and 

density of particle b, respectively; 𝑊𝑎𝑏  is the smooth kernel function (also called kernel 

function); 𝛻𝑎𝑊𝑎𝑏  is the gradient of the kernel function. In this study, the Gaussian kernel 

function is adopted in the fluid solver, 

𝑊 = 𝛼𝑑 {𝑒−𝑅2
, 0 ≤ 𝑅 < 3

0,          𝑅 ≥ 3
 

(3) 
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where R is the dimensionless distance between adjacent particles, R=|ra- rb |/h, and h is the 

smooth length. In the two-dimensional plane, the coefficient αd is 1/(πh2). The Gaussian kernel 

function has a large support domain, which can ensure that there are enough adjacent particles 

to participate in the calculation and effectively improve the calculation accuracy [17].  

The Wenland C2 kernel function is used in the flexible structure solver, 

𝑊 = 𝛼𝑑 {
(1 + 2𝑅)(1 − 𝑅/2)4, 0 ≤ 𝑅 < 2
0,          𝑅 ≥ 2

 
(4) 

where the coefficient αd =3/(4h) in this study for two-dimensional structure. 

2.2 The modification of the single-layer boundary 

In this study, to simulate the SPH shell model, the structure is modeled by single-layer 

particles. The structure is also the boundary of the fluid, which means the positions where 

structural particles are located also belong to the positions of boundary particles in the fluid. 

The single-layer shell structure means the single-layer boundary, whose challenge is the 

truncation of the support domain of fluid particles near the boundary. In this study, we utilize 

the normal flux approach, as proposed by Li et al. [2], which considers a modification of kernel 

function for fluid particles near the boundary. The integral approximation of the spatial 

derivative ( )f x  can be modified as follows: 

𝛻𝑓(𝒙𝑎) = ∑[𝑓(𝒙𝑚) − 𝑓(𝒙𝑎)]

𝑚

𝑊(𝒙𝑎 − 𝒙𝑚, ℎ) ⋅ 𝑛𝑚𝑆𝑚 + ∑[𝑓(𝒙𝑏) − 𝑓(𝒙𝑎)]

𝑏

𝛻𝑎𝑊(𝒙𝑎 − 𝒙𝑏 , ℎ)𝑉𝑏 (5) 

where m represents the single-layer boundary particle within the support domain of fluid 

particle a; b represents the fluid particle within the support domain of fluid particle a; 
mn is the 

normal vector of the single-layer boundary particle m. Sm is the area of particle m. In two-

dimensional space, here Sm is equal to particle spacing ∆. 

2.3 Fluid solver  

The governing equations of fluid dynamics including the turbulence model can be expressed 

as follows: 

 

𝐷𝜌

𝐷𝑡
= −𝜌

𝜕𝑢𝑖

𝜕𝑥𝑖

 
(6) 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜇
𝜕𝑢𝑖

𝜕𝑥𝑗

− 𝜌𝑢𝑖
′𝑢𝑗

′) + 𝒇𝑒𝑥𝑡  
(7) 

where i, j are the indexes representing different directions; t is the time; D/Dt indicates the 

global derivative; ρ is the density; ui, uj are the time-averaged value of the velocity components; 

p is the time-averaged pressure;   is the dynamic viscosity of fluid; 
' '

i ju u−  is the Reynolds 

stress; ext
f  is the external force, including gravity and resistance, ext  = −f g u  in this study 

where g  is gravity and u  is the velocity of fluid. Herein,   is the coefficient of the resistance, 

calculated as 
0 0 =u g [18], where 0u  is the inlet velocity. 

When solving the pressure p in Eq. (7), a weakly compressible state equation is used, 
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𝑝 = 𝐵 [(
𝜌

𝜌0

)
𝛾

− 1] 
(8) 

where coefficient 2

0 /B c = , 7.0 = ; 
0  is the initial or reference density; c is the artificial 

sound speed that ensures calculation efficiency and stability. To ensure the weakly 

compressible conditions, it is necessary to limit the inflow Mach number Ma (that is, the ratio 

of the inflow velocity to the artificial sound speed) to not be greater than 0.1. Generally in the 

SPH calculation, the sound speed c is set as max max 010max( , / )c u p  [19,20], where 
maxu  

and maxp are the estimated maximum fluid velocity and pressure, respectively. 

The Reynolds stress in Eq. (7) is calculated as follows: 

−𝜌𝑢𝑖
′𝑢𝑗

′ = (𝜏𝑖,𝑗)𝑡 = −𝑝𝑡𝛿𝑖,𝑗 + 𝜇𝑡(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) −
2

3
𝜇𝑡𝛿𝑖,𝑗𝑑𝑖𝑣𝑢 

(9) 

where tp  is the pressure caused by the fluctuation, 0

0

2
1

3
tp k



 

 

  
 = − 
   

; t is the turbulent 

viscosity coefficient shown as follows: 

𝜇𝑡 = 𝑐𝜇𝜌𝑘2/휀 (10) 

where k is the turbulent kinetic energy;   is the dissipation rate. The equations about turbulent 

kinetic energy k  and dissipation rate   are calculated by[21] 

𝜌
𝐷𝑘

𝐷𝑡
=

𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑗

] + 𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗

(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) − 𝜌휀 
(11) 

𝜌
𝐷휀

𝐷𝑡
=

𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝜀

)
𝜕휀

𝜕𝑥𝑗

] +
𝑐1휀

𝑘
𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗

(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) − 𝑐2𝜌
휀2

𝑘
 

(12) 

The coefficients in the Eqs. (9), (10), (11) and (12) are 0.09c = , 
1 1.44c = , 2 1.92c = , 

1.0k = , and 1.3 = . 

The governing equations (6), (7), (11), and (12) are discretized by the SPH method, as shown 

in Eqs. (1) and (2). In addition, for fluid particles near the single-layer boundary, the modified 

format considering the effect of single-layer is added according to Eq (5).  

Please note that in this algorithm, some techniques or models that ensure the efficiency and 

stability of the calculation are used. To suppress the oscillation of the density and pressure, the 

δ-SPH model [22] is introduced in the continuity discretization equation. To avoid the particle 

aggregation and cavitation phenomena, the particle shifting technique (PST) is introduced to 

enhance the calculation stability of the particle method in the Lagrangian space [23]. 

2.4 Flexible-structure solver 

In this study, the SPH shell model with a single layer is adopted to construct the thin structure, 

ensuring accurate modeling of the thin structure while minimizing the computational cost. 

According to the Uflyand-Mindlin theory, the shell structure behavior can be represented by 

using one layer of particles at the mid-surface of the shell. In the SPH shell model, there are 
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such coordinates: global coordinate ( , , )X Y Z=X  , initial local coordinate 0 0 0 0( , , )x y z=x , 

and current local coordinate ( , , )x y z=x  . Each SPH particle possesses five degrees of freedom: 

three translations 
1 2 3{ , , }Tq q q=q   and two rotations { , }T = , expressed in the initial 

configuration tangent to the initial shell mid-surface. The pseudo-normal vector is presented in 

initial coordinates 
1 2 3{ , , }Tn n n=n . 

The plate is assumed to have a uniform thickness d. The position vector r  of any material 

point located at a distance 
0z  from the mid-surface can be expressed as 

𝒓(𝑥0, 𝑦0, 𝑧0, 𝑡) = 𝒓𝒎(𝑥0, 𝑦0, 𝑡) + 𝑧0𝒏(𝑥0, 𝑦0, 𝑡),     𝑧0 ∈ [−𝑑/2, 𝑑/2] (13) 

where mr  is the position vector of the particle located on the mid-surface. In the following text, 

the subscript ( )m  represents the parameter on the mid-surface of the shell.  

The displacement vector expressed in the initial local coordinate can be expressed as follows: 

𝒒(𝑥0, 𝑦0, 𝑧0, 𝑡) = 𝒒𝒎(𝑥0, 𝑦0, 𝑡) + 𝑧0𝛥𝒏(𝑥0, 𝑦0, 𝑡) (14) 

The deformation gradient tensor F is defined by 

𝐅 = 𝛻0𝒓 = {𝒂𝟏
𝑻, 𝒂𝟐

𝑻, 𝒂𝟑
𝑻} (15) 

where, 

𝒂𝟏 = 𝒓𝑚,𝑥0 + 휁𝒏𝑥0 

𝒂𝟐 = 𝒓𝑚,𝑦0 + 휁𝒏𝑦0  

𝒂𝟑 = 𝒏 

(16) 

Therefore, the deformation gradient tensor can be split into two parts. 

𝐅 = 𝐅𝑚 + 𝑧0𝐅𝑛 (17) 

where ( )0 0, ,
, ,T T T

m m x m y
=F r r n  and ( )0 0, ,0T T

n x y
=F n n . 

In the shell model, Green-Lagrange strain tensor E can be described by the deformation 

gradient tensor F :  

 

𝐄 = 𝟎. 𝟓(𝐅𝐓𝐅 − 𝐈) (18) 

Euler-Almansi strain tensor can be written as follows: 

𝛆𝐚𝐥𝐦 = 𝐅−𝐓𝐄𝐅−𝟏 = 𝟎. 𝟓(𝐈 − 𝐅−𝐓𝐅−𝟏) (19) 

The constitutive relation is established via the Euler-Almansi strain and Caushy stress   in 

the local coordinate of the current configuration: 

𝛔 = 𝐾𝐭𝐫(𝛆)𝐈 + 2𝐺 (𝛆 −
1

3
tr(𝛆)𝐈) = λtr(𝛆)𝐈 + 2μ𝛆 

(20) 

where the shear modulus 
2(1 )

E
G


=

+
; the bulk modulus 

3(1 2 )

E
K


=

−
; E denotes the Young’s 

modulus and   denotes the Poisson ratio;    and  are Lamè constants, 2 / 3K = −  , 

G = . 
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The second-order Piola-Kirchhoff stress tensor S is expressed in the current local coordinate 

as follows: 

𝐒 = 𝐽𝐅−𝟏𝐐𝟎𝐐𝐓𝛔𝐐(𝐐𝟎)𝐓𝐅−𝐓 (21) 

where ( )det mJ = F  is the Jacobian determinant, 
0Q  and Q  are orthogonal transformation 

matrices in the initial local coordinate and current local coordinate, respectively. 

The first-order Piola-Kirchhoff stress tensor P can be expressed as  

𝐏 = 𝐐(𝐐𝟎)𝐓𝐅𝐒 (22) 

Based on the three-point Gaussian quadrature rule, the Piola-Kirchhoff stress tensor obtained 

by the above formula is summed to obtain the generalized stress tensor N and the generalized 

moment tensor M in the initial local coordinate as follows: 

𝐍 = ∫ 𝐏(𝑧0)𝑑𝑧0 =
𝑑

2
∫ 𝐏(

𝑑

2
𝑧0)𝑑𝑧0

1

−1

=
𝑑

2
∑ 𝐏(

𝑑

2
𝑧𝑘

0)𝛼𝑘

3

𝑘=1

𝑑/2

−𝑑/2

 

(23) 

𝐌 = ∫ 𝑧0𝐏(𝑧0)𝑑𝑧0 =
𝑑

2
∫

𝑑

2
𝑧0𝐏(

𝑑

2
𝑧0)𝑑𝑧0

1

−1

=
𝑑

2
∑

𝑑

2
𝑧𝑘

0𝐏(
𝑑

2
𝑧𝑘

0)𝛼𝑘

3

𝑘=1

𝑑/2

−𝑑/2

 

(24) 

In this study, the Gaussian sampling point positions are selected as 0

kz = (0, 0.7746, -0.7746), 

which are located on the mid-surface and its two sides, respectively. The integration weights 

corresponding to the sampling points are 
k = (0.8889, 0.5556, -0.5556). 

The mass conservation equation of the shell model is 

𝜌 = 𝐽𝑚
−1𝜌0 (25) 

where 
1 det( )m mJ − = F , 0  and  are the structure densities at the initial and current time 

respectively.  

The dynamic equations described in TL-SPH can be written as 

𝑑𝜌0�̈�𝒎 = ∇ ⋅ (𝐍𝐓) + 𝑭𝒆𝒙𝒕 (26) 

𝑑3

12
𝜌0�̈� = 𝛻 ⋅ (𝐌𝑇) + 𝐓 

(27) 

ext
F  is the external force acting on the shell structure, including gravity g and the interaction 

force of fluid-flexible structure interac
f . The fluid-flexible-structure interaction force interac

f  

represents the external force exerted by the fluid on the flexible structure. 

𝒇𝑖𝑛𝑡𝑒𝑟𝑎𝑐 = 𝑑𝜌0 ((
𝐷𝑢𝑖

𝐷𝑡
)

𝑓𝑙𝑢𝑖𝑑
− 𝒇𝑓𝑙𝑢𝑖𝑑

𝑒𝑥𝑡 /𝜌𝑓𝑙𝑢𝑖𝑑) 
(28) 

The discretization format of the dynamic equations can be written as 

�̈�𝑚,𝑎 = ∑(𝐍𝐚 + 𝐍𝑏) ⋅
𝛻𝑎

0𝑊𝑎𝑏𝑉𝑏

𝑑𝜌𝑎
0

𝑏

+
𝑭𝑎

𝑒𝑥𝑡

𝑑𝜌𝑎
0

 
(29) 
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�̈�𝑎 = ∑(𝐌𝑎 + 𝐌𝑏) ⋅
12𝛻𝑎

0𝑊𝑎𝑏𝑉𝑏

𝑑3𝜌𝑎
0

𝑏

+
12𝐓𝑎

𝑑3𝜌𝑎
0
 

(30) 

In the fluid solver and flexible-structure solver, the predictor-corrector scheme is used for 

time integration. 

3 SIMULATION RESULTS 

The filament movement in the coming flow is simulated. The length of the filament is L. A 

computational domain of extent [-2.5L,6.875L]×[-1.875L,1.875L] is employed in the present 

work. The filament is positioned within the computational domain, fixed at its left end, while 

the right end is free. Initially, the filament is placed in an orientation angle 0.1 =  to the 

direction of the constant incoming flow and gravity g, as shown in Figure 1. The dimensionless 

parameters are chosen as  𝑅𝑒 =
𝜌𝑓𝑈0𝐿

𝜇
= 200, 𝜆 =

𝜌𝑠𝑑

𝜌𝑓𝐿
= 1.5, 𝐾𝐵 =

𝐸𝐼

𝜌𝑓𝑈0
2𝐿3 = 0.0015, 𝐹𝑟 =

𝑢

√𝑔𝐿
= 1.4. The initial turbulent kinetic energy is set to k=0.00489U0 

2
, and the initial dissipation 

rate is set to 57t = . The SPH particles are uniformly distributed with spacing ∆ = 0.009375L. 

The GPU parallel algorithm is used to enhance computational efficiency. 

 

Figure 1: Computational model of the single flapping filament in uniform flow. 

The results of filament motion and the flow field are obtained using the current SPH 

algorithm. Figure 2 shows the instantaneous velocity and vorticity contours at several moments. 

It can be seen that as time goes by, the vortex sheds from the filament and gradually decreases 

in intensity as it moves back. At the same time, the filament is flapping symmetrically and 

periodically. The obtained results illustrate the feasibility of the current SPH algorithm in 

simulating FFSI problems. 
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Figure 2：Dimensionless velocity contours and vorticity contours for fully developed flow at tU0/L=25.6, 26.4, 

27.2, and 28.0. 

4 CONCLUSIONS 

- To simulate the FFSI problems, a pure SPH method is proposed to discretize both the 

fluid dynamics equations and the structural dynamics equations. In the pure SPH 

method, the shell model is used to simulate the thin structure, and a single-layer 

boundary is combined into the shell model to avoid the error caused by the boundary 

truncation. 

- The proposed SPH algorithm can simulate the FFSI problems stably. The motion of 

the filament and the flow field are captured. 
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