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Summary. Several subsurface technologies involve injection of fluids at high pressure. An
example is the extraction of the unconventional resources which involves well-stimulation tech-
niques. One of the main well-stimulation techniques, especially for tight shale gas formations, is
hydraulic fracturing. During this process, a fluid is injected into the formation at an extremely
high pressure to initiate a network of fractures. The generated fractures are assumed to remain
open, but this is not always the case. To accurately model the situation when fractures close
back, one has to consider a coupled flow with geomechanics problem along with contact me-
chanics boundary conditions. Motivated by that, in this work, we extend the well-known single
rate and multirate fixed-stress split coupling scheme to include frictionless contact mechanics
boundary conditions for a poroelastic Biot model. In this model, a frictionless contact is as-
sumed with the well-known Signorini condition in a form with a gap function. We state the
results on the convergence of the extended single rate and multirate fixed-stress split schemes
based on a fixed-point Banach contraction argument giving rise to the linear convergence of the
corresponding scheme.

1 INTRODUCTION

Nowadays, as more tight gas and unconventional resources are being exploited worldwide, solving
the coupled flow and geomechanics problem is becoming more important. This is due to the fact
that to extract hydrocarbons trapped in these natural resources, well stimulation techniques,
and in particular hydraulic fracturing, are often used to frack the formation to enhance recov-
ery. Furthermore, once the hydraulic fracturing job is performed, proppants are injected into
the natural and induced fractures to keep them open. Now, it is very clear that to model such
a highly coupled problem, contact mechanics boundary conditions [1–5] should be incorporated
into the underlying coupled model to accurately model fractures opening and closing, and also
to determine the mechanical strength of the proppants needs to sustain the surrounding stress
and keep the fractures open. Beyond hydraulic fracturing, the coupling of flow and mechanics
in subsurface modeling has numerous applications. These include groundwater flow, geothermal
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energy extraction, carbon sequestration, and underground hydrogen storage. In all these ap-
plication areas, the interaction of flow, mechanics, and fractures or faults is critical to the risk
management. The risk arises out of induced seismicity due to injection at high pressure or the
leakage through the high permeable conduits facilitated by the fractures. The risk management
requires an understanding of the mechanics of the fracture or the fault coupled to the flow and
mechanical deformations in the porous matrix. In terms of simulation of these multiphysics
processes, the challenge is in developing efficient numerical schemes for solving coupled flow and
deformations in the presence of contact conditions.

Solving the coupled flow and mechanical deformations including the contact mechanics requires
appropriate numerical approaches. For several reasons, the flow and mechanical problems are
decoupled and solved in an iterative manner. These reasons include the use of existing separate
legacy codes for flow and mechanics problems, development of efficient preconditioners based on
block diagonal decoupling of the flow and mechanical effects, and flexibility with respect to time
stepping for each of the two equations. The fixed stress split and the undrained split schemes
are quite common iterative coupling scheme to solve the mechanical and flow problems that
decouples these two effects. The two equations are solved in a sequential manner during every
iterative coupling iteration, and a regularization term is added to the flow problem to stabilize
the scheme and ensure convergence [6–8].

In this work, we announce the results concerning the convergence of the multirate schemes for
the coupled flow and mechanics problems in presence of frictionless contact conditions. This
extends the recent work presented in [9] to the multirate case. Here, the flow and mechanics
problems assume two different time scales: a fine time scale for the flow problem, and a coarse
time scale for the mechanics problem [10]. These methods exploit the difference in characteristic
time scales for different physical effects. For example, we consider the mechanics to be quasi-
static and the flow to be time dependent and in such a case, the time scale for mechanical effects
is typically slower than the flow time scale. The computational efficiency considerations suggest
solving mechanics on a coarse time scale and the flow being solved on a finer scale. Multirate
schemes are accordingly designed to take several flow steps for each mechanics time step. This
is an idea borrowed from the ODE literature, see for example [11] for solving a system of ODEs.
In the current setting, we need to combine the multirate approaches with the iterative scheme
that decouples flow and mechanics. Once the equations are decoupled, the multirate strategy
involves solving several flow steps for each mechanics step. Accordingly, we consider a multirate
extension of the fixed stress split iterative method for the Biot equations now also involving
the (simplified) contact mechanics. For the case of the Biot model, multirate extensions of the
undrained split and the fixed stress split schemes were proposed and analysed in [12–15]. In the
previous work [9], the convergence of the single rate fixed stress split scheme was established
with frictionless contact mechanics boundary conditions. Incorporating the contact mechan-
ics boundary conditions led to a coupled system in which the mechanics equation is modeled
through a variational inequality of the first kind [1,9].

As stated above, in this work, we state the convergence of the multirate fixed stress split scheme
with frictionless contact mechanics boundary conditions for the linear Biot model. It should be
noted here the convergence of the standard fixed-stress split scheme was established in [7,16,17]
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Figure 2.1: Frictionless contact of a porous medium with a rigid foundation with a gap function ga

for the linear Biot model without fractures, and extended to fractured poro-elastic media in [18].
However, it was only in the recent work of [9] that contact mechanics boundary conditions were
incorporated. In this paper, we announce the result that convergence still holds even when two
different time scales are used: a coarse one for the mechanics problem, and a fine one for the
flow problem.

The paper is organized as follows: Section (2) describes the Biot linear elastic model with fric-
tionless contact mechanics boundary conditions. The mixed variational formulation is presented
in Section (3). Section (4) presents our main result in this work for the multirate fixed stress
split scheme, followed by Conclusions in Section (5).

2 BIOT LINEAR ELASTIC MODEL WITH FRICTIONLESS CONTACT ME-
CHANICS BOUNDARY CONDITIONS

We adopt the same model as described in [1,9]. Let Ω ⊂ Rd be a bounded domain (d = 2, 3). The
boundary Γ is assumed to be smooth and split into three pairwise disjoint sets Γ1,Γ2, and Γ3
such that Γ = Γ̄1∪Γ̄2∪Γ3 as shown in Figure 2.1, with meas(Γ1) > 0. We note here that Γ1
represents the part of the boundary with Dirichlet mechanics boundary condition, Γ2 for the
Neumann traction boundary condition, and Γ3 is the part of the boundary with the frictionless
Signorini contact mechanics boundary condition.
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2.1 Mechanics Model

The mechanics model with frictionless contact denoted by the Signorini condition in a form with
a gap function in a porous medium is given as follows [1, 9]:

∇ · σpor + f0 = 0, (2.1)
σpor(u, p) = σ(u)− αpI, (2.2)

σ(u) = λ(∇ · u)I + 2Gε(u), (2.3)

ε(u) = 1
2
(
∇u+∇uT

)
. (2.4)

With the boundary conditions:

u = 0 on Γ1, σν = f2 on Γ2, (2.5)
uν ≤ ga, σν ≤ 0, σν(uν − ga) = 0 on Γ3, (2.6)

στ = 0 on Γ3. (2.7)

in which u is the displacement field (u : Ω 7→ Rd) and σ is the stress field (σ : Ω 7→ Sd),
where Sd is the space of second order symmetric tensors on Rd. In the above, (2.1) is the
balance of linear momentum equation (in quasi-static form, ignoring the second order time
derivatives of displacements), (2.2) is the effective stress equation (subtracting the pore pressure
contribution from the stress field), (2.3) is the standard definition of the stress field (Hooke’s
law) under homogeneous media and isotropic assumptions, and finally (2.4) is the linear strain
equation. Furthermore, the gap between the domain and foundation is denoted by (ga > 0) (a
strictly positive given scalar). The Signorini contact mechanics boundary conditions are given
by equation (2.6) with the gap function ga. The first condition in (2.6) ensures that the normal
component of the displacement is less than the initial gap ga, the second condition ensures that
the normal stress is always compressive, and the third condition is a complementarity condition
ensuring that the normal stress vanishes when the normal displacement is less than the initial
gap ga. The boundary condition given by (2.7) ensures the frictionless case (the tangential
component of the stress equals zero). Finally, the homogeneous Dirichlet boundary condition
on Γ1 and the traction Neumann boundary condition on Γ2 are specified by (2.5). We note here
that uν = u · ν, σν = (σν) · ν, στ = σν − σνν. We refer the reader to [1,9] for more details on
the model considered above.

2.2 Flow Model

In this work, we consider a slightly compressible singe phase flow model. The conservation of
mass is given by: The flow equation consists of the mass balance equation:

∂

∂t

(( 1
M

+ cfϕ0
)
p+ α∇ · u

)
+∇ · z = q. (2.8)

We note here that z is the flux variable, which is given by the Darcy law as follows: The flux z
is described by the Darcy law.

z = − 1
µf
K
(
∇ p− ρf,rg∇ η

)
. (2.9)
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In the above, p is the pore pressure, 1/M is the solid matrix compressibility coefficient, cf is the
fluid compressibility, φ0 is the initial porosity, µf is the fluid viscosity, ρf,r is the fluid reference
(constant) density, and α is the Biot coefficient.

3 MIXED VARIATIONAL FORMULATION

A mixed finite element formulation will be used for the flow and a conformal Galerkin formulation
will be used for the contact mechanics problem. For time discretization, the standard backward-
Euler scheme will be used. Using the lowest order Raviart-Thomas (RT) spaces, and assuming a
family of conforming triangular elements covering the domain of interest Ω, and denoted by Th,
our discrete spaces are given as follows (Qh for discrete pressures, Vh for discrete displacements,
and Zh for discrete fluxes):

Vh = {vh ∈ H1(Ω)d ; ∀T ∈ Th,vh|T ∈ P1
d,vh|Γ1 = 0} (3.10)

Qh = {ph ∈ L2(Ω) ; ∀T ∈ Th, ph|T ∈ P0, ph = 0 on Γ} (3.11)
Zh = {qh ∈ H(div; Ω)d ; ∀T ∈ Th, qh|T ∈ P1

d, qh · ν = 0 on Γ} (3.12)

In what follows, we first derive a variational inequality for the contact mechanics problem, then
we will be ready to write our weak formulation of the coupled contact mechanics problem.

3.1 Variational Inequality of The First Kind

In continuous settings, we define the space of displacements as follow:

Vu :=
{
v ∈ H1(Ω)d : v = 0 a. e. on Γ1,vν ≤ ga

}
Now, following the standard procedure, we multiply (2.1) by a test function v ∈ Vu, and integrate
by parts to derive the following weak formulation [1, 9]:

Finds u ∈ Vu such that

2G (ε(u), ε(v)− ε(u))Ω + λ (∇ · u,∇ · v −∇ · u)− α (p,∇ · v −∇ · u)
= (σν , vν − uν)Γ3 + (f0,v − u) + (f2,v − u)Γ2 + (στ , vτ − uτ )Γ3 (3.13)

for all v ∈ Vu. We note here that the last term in (3.13) vanishes as στ = 0 on Γ3. In addition,
the term (σν , vν − uν)Γ3 can be expanded as: (σν , vν − uν)Γ3 = (σν , (vν − ga) − (uν − ga))Γ3 =
(σν , (vν − ga))Γ3 using the condition σν(uν − ga) = 0. Furthermore, using the two conditions:
uν − ga ≤ 0 (recall that u ∈ Vu) and σν ≤ 0, the weak formulation now reads:

Find u ∈ Vu such that

2G (ε(u), ε(v)− ε(u))Ω + λ (∇ · u,∇ · v −∇ · u)− α (p,∇ · v −∇ · u)
≥ (f0,v − u) + (f2,v − u)Γ2

for all v ∈ Vu.

Next, assume that the pressure p is given. Define:

(u,v)Q := 2G (ε(u), ε(v))Ω + λ (∇ · u,∇ · v)− α (p,∇ · v)
(f ,v)V := (f0,v − u)Ω + (f2,v − u)Γ2
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for all v ∈ Vu.

Therefore, we retrieve the variational inequality of the first kind:

Find u ∈ Vu such that

(u,v − u)Q ≥ (f ,v − u)V

for all v ∈ Vu.

3.2 Weak Formulation

We write down the weak formulation in the discrete form:

(Flow equation in discrete form) Find pkh ∈ Qh and zkh ∈ Zh such that

∀θh ∈ Qh ,
1

∆t
(( 1
M

+ cfϕ0
)(
pkh − pk−1

h

)
, θh
)

+ 1
µf

(
∇ · zkh, θh) =

− α

∆t
(
∇ ·

(
ukh − uk−1

h

)
, θh
)

+
(
qh, θh

)
, (3.14)

∀qh ∈ Zh ,
(
K−1zkh, qh

)
=
(
pkh,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (3.15)

(Mechanics equation in discrete form) Find ukh ∈ Vh such that for all vh ∈ Vh

(ukh,vh − ukh)Q ≥ (f ,vh − ukh)V , (3.16)

with the following initial conditions for the first time step: p0
h = p0 and u0

h = u0. To ensure the
well-posedness of the model equations, we assume the compatibility of the initial data [19].

4 MULTIRATE FIXED STRESS SPLIT FOR FRICTIONLESS CONTACT PROB-
LEM

To contrast the multirate scheme with the traditional single rate scheme (same time step for
flow as well as for mechanics equations), we start with the single rate fixed stress split scheme
for the frictionless contact problem. Table 4.1 summarizes the major differences between these
two schemes when solving the coupled flow and mechanics problem.

Remark 4.1 (Remark on Notation). In what follows, we assume the following notation: n
denotes the iterative coupling iteration index, k is the time step index in the single rate scheme
and the coarse mechanics time step index in the multirate scheme (k is a multiple of q in the
multirate scheme, and q is the number of flow fine time steps within one coarse mechanics time
step), and m is the local fine flow time step index in the multirate scheme (1 ≤ m ≤ q). We
note here that as n approaches infinity, the scheme converges to the fully implicit scheme.

4.1 SINGLE RATE FIXED STRESS SPLIT

As stated in [9], the numerical scheme for the single rate fixed stress split algorithm for the
frictionless contact problem splits the problem in flow solve followed by the mechanics solve.
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Table 4.1: Single Rate versus Multirate Flow-Mechanics Coupling

Feature Single-Rate Coupling Scheme Multirate Coupling Scheme
Time-Stepping Single time step for both flow and

mechanics
fine time steps for flow, coarse for
mechanics

Computational
Cost

Higher due to frequent mechanics
couplings

Lower due to less frequent mechan-
ics couplings

Accuracy More accurate coupling between
flow and mechanics

May introduce errors if time steps
are not selected carefully

Implementation
Complexity

Straightforward More complex due to different time
scales

Flexibility Limited flexibility in adapting phys-
ical time scales

Flexible physics-driven time-
stepping for flow and mechanics

The flow problem is stabilised by adding a term on the diagonal of the pressure matrix. The
scheme is given as follows:

Step (a): Flow step: Find pn+1,k
h ∈ Qh, zn+1,k

h ∈ Zh such that:

∀θh ∈ Qh ,
(( 1
M

+ cfϕ0 + α2

λ

)(pn+1,k
h − pk−1

h

∆t
)
, θh
)

+ 1
µf

(
∇ · zn+1,k

h , θh
)

=

(
− α

λ

(
− α

(pn+1,k
h − pk−1

h

∆t
)

+ λ∇ ·
(un+1,k

h − uk−1
h

∆t
))
, θh
)

+
(
qh, θh

)
, (4.17)

∀qh ∈ Zh ,
(
K−1zn+1,k

h , qh
)

= (pn+1,k
h ,∇ · qh) +

(
∇(ρf,rgη), qh). (4.18)

Step (b): Mechanics step: With pn+1,k
h ∈ Qh computed from the flow step, find un+1,k

h ∈ Vh
such that for all vh ∈ Vh

(un+1,k
h ,vh − un+1,k

h )Q ≥ (f ,vh − un+1,k
h )V . (4.19)

We comment on the structure of the above scheme. The first equation describing the evolution
of the pressure is stabilized with (α2/λ)pn+1,k

h term being added on the left hand side. Moreover,
to ensure consistency a similar term with pressure term being iteration lagged is added to the
right hand side. The convergence of the above scheme yields the solution of above discrete
weak form (3.14) - (3.16). In what follows, the convergence theorems will be shown in terms of
differences between coupling iterates within every time step. For a particular time step t = tk,
we will denote the difference as follows:

δξn+1,k = ξn+1,k − ξn,k,

where ξ can represent ph, zh, or uh. As derived in [9], the scheme above converges to the unique
solution of the coupled problem thanks to the following theorem:

7



Tameem Almani, Osman Hamid, and Kundan Kumar

Theorem 1. Define σn,kv as σn,kv := λ∇ · un,kh − α(pn,kh − p
k−1
h ).The iterative scheme defined by

(4.17) - (4.19) is a contraction given by∥∥∥δσn+1,k
v

∥∥∥2

Ω
+ 2∆tλMα2

µf (Mα2+λ(1+Mcfϕ0))

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

Ω
+ 4Gλ

∥∥ε(δun+1,k
h )

∥∥2
Ω

+λ2∥∥∇ · δun+1,k
h

∥∥2
Ω ≤

(
Mα2

λ+Mλcfϕ0+Mα2

)2∥∥∥δσn,kv ∥∥∥2

Ω
.

In the above theorem, we notice that
(

Mα2

λ+Mλcfϕ0+Mα2

)2
< 1 implying that this is contraction.

We also notice that when M (compressibility is small) is large, the convergence is slower. In the
above theorem, the contraction is achieved for σn,kv which is a composite quantity of ∇ · un,kh
and pn,kh . The convergence to the physical variables is achieved by the convergence of σn,kv
together with the remaining terms on the left hand side in the above theorem. This ensures the
convergence of this scheme to the unique solution of the coupled weak form (3.14) - (3.16). An
alternative approach is to get the contraction estimate directly in terms of physical variables in
their natural energy norms as followed in [20, 21]. The choice of stabilization factor determines
the contraction factor. We expect that the smaller this contraction coefficient, the number of
iterations needed to achieve a desired tolerance will be smaller. However, this turns out to be
more delicate. In fact, this is dependent on the full H2 estimate from the control of −∆ in a
domain. As shown in [22], the optimal number of iterations depends on the domain and the
boundary conditions.
The extension to the multirate scheme, in which the flow takes multiple fine time step within
one coarse mechanics time step requires choosing the appropriate iteration between flow and
mechanics equation. The multirate weak formulation of the coupled contact model reads [10]:

For k = iq, i ∈ N, n = 1, 2, ..

• Step (a): q Fine Flow Steps: For 1 ≤ m ≤ q, find pn+1,m+k
h ∈ Qh, and zn+1,m+k

h ∈ Zh
such that,

∀θh ∈ Qh ,
1

∆t
(( 1
M

+ cfϕ0 + L
)(
pn+1,m+k
h − pn+1,m−1+k

h

)
, θh
)

+ 1
µf

(
∇ · zn+1,m+k

h , θh) = 1
∆t
(
L
(
pn,m+k
h − pn,m−1+k

h

)
− α

q
∇ ·

(
un,k+q
h − un,kh

)
, θh
)

+
(
q̃h, θh

)
, (4.20)

∀qh ∈ Zh ,
(
K−1zn+1,m+k

h , qh

)
=
(
pn+1,m+k
h ,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
. (4.21)

• Step (b): Coarse Mechanics Step: Given pn+1,k+q
h and zn+1,k+q

h , find un+1,k+q
h ∈ Vh

such that,

(un+1,k+q
h ,vh − un+1,k+q

h )Q ≥ (f ,vh − un+1,k+q
h )V . (4.22)

We note the mathematical structure of the above scheme. The pressure equations and the dis-
placement equations are decoupled. The displacement equation is in fact a variational inequality
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due to the contact mechanics terms. The variational inequality arises from the Signorini con-
dition. Moreover, we need to solve q elliptic equations (arising out of time discretization of
parabolic pressure equation) followed by a mechanics solve which uses the pressure solution
after q flow solves in the first step. The flexibility of choosing several time steps for one mechan-
ics time step can be used to design parallel in time algorithm [23]. Below, we state our main
contraction result in this work:

Theorem 2. For 1 ≤ m ≤ q, define σn,m+k
v as σn,m+k

v = (pn,m+k
h − pn,m−1+k

h )− α
qL∇ · uh. For

L = α2

λ , c0 = 2Lq
χ2 , and β = 1

M + cfϕ0 + L, the multirate iterative scheme is a contraction given
by

2Gc0
∥∥ε(δun+1,k+q

h )
∥∥2 +∑q

m=1

∥∥∥δσn+1,m+k
v

∥∥∥2
+ ∆t

βµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+ ∆t
βµf

∑q
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

≤
(

Mα2

λ+Mλcfϕ0+α2M

)2∑q
m=1

∥∥∥δσn,m+k
v

∥∥∥2
.

We mention some remarks and contrast this result to the single rate result in Theorem 1. First,
in the above scheme, we have kept the stabilisation factor L as an unknown to be determined
by the proof. The theorem provides the value of L that ensures convergence and the same
value of L is also sufficient to provide the convergence in the single rate case. Interestingly, the
convergence rate is determined by the same contraction factor as in the single rate case, namely(

Mα2

λ+Mλcfϕ0+α2M

)2
< 1. The question of accuracy however is not addressed in this theorem.

In general, we expect the error to be less than the single rate case with q∆t time step. But
the theoretical error estimates only provide rather pessimistic error estimates of the order q∆t.
Another question is how to choose q. We note that a smaller q leads to higher computational
cost whereas the lower q saves computational costs as fewer mechanical steps are needed. How-
ever, this may be more delicate in more complex situations including nonlinear mechanics and
multiphase flow models where the larger time step of mechanics may lead to slow convergence
requiring more iterative steps. The appropriate value of q therefore has to be decided by a
posteriori error estimates. This remains to be addressed in a future work.

The proof of the above contraction theorem consists of 3 steps. In the first step, we estimate
the flow problem getting the energy estimates. The estimates for the flow provides the L2 norm
of the pressure and that of the fluxes. These estimates involve the coupling terms of pressure
and displacement which needs to be resolved using the help from the mechanics step. Next, we
estimate the mechanics step using the variational inequality. This yields the H1 norm estimate
for the displacement, however there is a coupling term containing pressure and displacement
that remains to be estimated. In the third step, we combine the flow and mechanics step and
use the composite quantities σn,m+k

v to get estimates. The coupling terms are subsumed in this
composite quantity. Some algebraic manipulations then complete the proof of contraction. This
however keeps the question of convergence of the physical variables still open. We note that we
have a variational inequality, pressure at fine time steps, and displacement at coarse time steps.
The convergence of these terms requires again the remaining terms on the left hand side of the
above theorem, mathematical induction, and nonlinear PDE arguments to complete the steps.
We omit the details of the proof in this paper, as it will be addressed elsewhere.
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5 CONCLUSIONS

In this work, we extend single rate and multirate fixed-stress split schemes to include frictionless
contact mechanics boundary conditions. The well-known Signorini condition [1] is used to model
the frictionless contact in a form with a gap function in a porous medium. The convergence
of the single rate fixed-stress split scheme with the Signorini condition was rigorously derived
in [9]. In this paper, we state an analogous result for the multirate fixed-stress split scheme with
the same condition (the Signorini condition). The detailed convergence proof will presented in
a detailed manuscript outside the scope of this short paper. It should be noted here that the
convergence analysis can be extended to other flow-mechanics coupling schemes, including the
undrained split scheme, which we will consider next. Furthermore, numerical simulations will
be considered in a future work to include the friction case as well.
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