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ABSTRACT

In response to the low accuracy and poor performance of traditional 
machine learning methods in identifying debris flow fans. This paper 
proposes an optimized Simple, Parameter-Free Attention Module (SimAM) 
attention mechanism named Spatial Coordinate Attention Module. It 
combines with convolutional neural networks to achieve precise 
segmentation of debris flow fans. Firstly, the energy function of the SimAm is 
improved to retain the spatial coordinate information of features. Secondly, 
the closed-form solution of the module is obtained through optimization 
theory to ensure lightweightness, resulting in the Spatial Coordinate 
Attention Module. Finally, the Spatial Coordinate Attention Module is 
embedded into classic segmentation network models to compare with 
mainstream attention mechanisms. Experimental results demonstrate that the 
proposed method outperforms mainstream attention mechanisms in various 
classic models, yielding more complete segmentation results. This approach 
effectively enhances the segmentation performance of the network models in 
the task of debris flow fans segmentation.

1 Introduction

Debris f low fans are not only direct products of debris f low activities but also key indicators for
identifying debris f low gullies, studying the development history of debris f lows, and understanding
geomorpholo gical evolution. Additionall y, they are crucial for assessing the potential hazar d range of
debris f lows. Further more, debris f low fans are closely related to national economic development.
With the growth of popula tion and expansion of spatial needs, the relationship between humans
and land has become increasingl y strained, making debris f low fans important areas for local
development and utiliza tion. Surrounding debris f low fans are often residential areas, factories , major
transporta tion routes, or fertile far mland. In land planning and construction in mountainous regions,
accur ately identifying the fan-sha ped alluvial landfor ms for med at the mouths of gullies is essential.

In the semantic segmenta tion task of debris f low fans, the challenge lies in the close connection
of the fan’s boundary with the surrounding land, leading to high similarity in appear ance and
environment, resulting in weak boundary distinctiveness. Traditional methods for debris f low fans
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identif ication heavily rely on visual recognition, which is ineff icient and time-consuming. With the
rapid development of digital image processing and machine learning technolo gies, some researchers
have employed Support Vector Machine (SVM) classif ication [1] and pixel-based classif ication meth-
ods [2] to identify debris f low fans in remote sensing images. However, these methods still face
issues such as incomplete segmenta tion, excessive breakpoints , and noise points. In comparison to
the mentioned methods, the rapid progress of deep learning technolo gy provides a new solution to
the segmenta tion problem of debris f low fans. The applica tion of Convolutional Neural Networks
(CNNs) [3–7] has greatly addressed challenges in segmenta tion, such as diff iculty in distinguishing
boundaries and excessive noise.

In the research on the applica tion of convolutional neural networks for image segmenta tion,
various network structur es have emerged, such as F ully Convolutional Networks (FCN) [8], U-
net architectur e (UNet) [9], and Pyramid Scene Parsing Netw ork (PSPNet) [10]. FCN , proposed
by Long and Darrell in 2015, achieved pixel-level image classif ication, thereby solving semantic-
level image segmenta tion tasks , and can be considered a founda tional work in the field of deep
learning for semantic segmenta tion. In 2015, Ronneberger et al. introduced UNet to address medical
image segmenta tion problems, and due to UNet’ s outstanding perfor mance, it later found widespr ead
applica tions in various scenarios . In 2017, Zhao et al. proposed PSPNet, which used a pyramid pooling
module to build a scene parsing network. By fusing features at multiple scales and aggregating context
infor mation from different regions, the model gained the ability to understand global contextual infor-
mation. These studies indicate that excellent convolutional neural network structur es can significantly
improve the perfor mance of image segmenta tion tasks . Therefore, designing well-crafted convolutional
neural network structur es is crucial. However, when the above-mentioned network architectur es are
used for debris f low fans segmenta tion tasks , issues still persist, such as inaccur ate localiza tion and
incomplete segmenta tion. Constructing a more suitable network architectur e is highly complex, and
therefore, it is necessary to introduce attention mechanism modules [11–15] to help the network focus
on key infor mation.

Human visual attention, as a crucial selection mechanism, contrib utes to alloca ting limited
infor mation processing capacity by focusing on infor mation relevant to the target task while attenuat-
ing the interfer ence of irrelevant infor mation. Inspired by visual attention mechanisms, researchers
have designed similar attention modules in convolutional neural networks, including the Squeez e-
and-Ex citation Networks (SE) [16], Convolutional Block Attention Module (CB AM) [17], Effcient
Channel Attention (ECA) [18], Coor dinate Attention (CA) [19], and Simple, Parameter-Free Atten-
tion Module (SimAM) [20]. The SE module enhances the model’s sensitivity to channel features by
compressing and activating them. The CBAM module strengthens the model’s sensitivity to both
channel and spatial features. The ECA module, proposed on the founda tion of the SE module,
acts as a local cross-channel interaction strategy, enhancing the model’s infor mation extraction
capability on channel features. The CA module enables the network to accur ately capture spatial
position infor mation, increasing the model’s focus on spatially important features. However, the
afor ementioned attention mechanism modules have limitations as they can only refine features in
the channel or spatial dimension, thereby restricting the f lexibility to learn attention weights for
cross-channel and spatial transfor mations. To address this issue, Yang et al. proposed the SimAM
attention mechanism module based on mature neural science theories. It defines an energy function
that simultaneousl y considers overall spatial and channel features, maintaining a lightw eight design
while improving model perfor mance. These attention mechanism modules have been widely applied
to enhance the perfor mance of convolutional neural networks. Debris f low fans segmenta tion is an
intensive prediction task that requires predicting the category for each pixel while simultaneousl y
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learning high-level semantic infor mation, overall spatial infor mation, and spatial coordinate infor-
mation for each feature. The SimAM module determines the importance of the current neuron by
linear ly separating it from other neurons, emphasizing overall spatial infor mation, but it does not
retain the spatial coordinate infor mation of neurons. Therefore, we propose an improved strategy for
the SimAM attention mechanism, preserving feature spatial coordinate infor mation to achieve precise
segmenta tion of debris f low fans.

In order to achieve precise segmenta tion of debris f low fans, this paper combines convolutional
neural networks and proposes a Spa tial Coor dinate Attention Mechanism (SCAM). The main
contrib utions of this paper are as follo ws: (1) Based on neuroscience, a new energy function is proposed
to enhance the deficiencies of the SimAM module in extracting spatial coordinate infor mation; (2)
The closed-for m solution of the energy function is derived through mathematical theory, ensuring the
lightw eight nature of the module; (3) The model is embedded into different semantic segmenta tion
network architectur es and evaluated on the task of debris f low fans segmenta tion.

2 Spatial Coordinate Attention Mechanism
2.1 SimAM

The SimAM attention mechanism is inspired by the spatial inhibition mechanism in neuroscience
theory. By defining an energy function and utilizing the closed-for m solution of the energy function
as weights, the module is lightw eight and enhances interpretability.

The energy function provided by SimAM is expressed as Eq. (1).

et (wt, bt, y, xi) = 1
M − 1

M−1∑
i=1

(y0 − (wtxi + bt))
2 + (yt − (wtt + bt))

2 + λw2
t (1)

In the formula, yt = 1 and y0 = −1 represent two different label values, t and xi are the target
neuron and other neurons in a single channel of input features, i is the index of spatial coordinates, M
is the number of neurons on that channel, wt and bt are the weights and biases of the transfor mation.

Solv e the partial derivatives of Eq. (1) with respect to wt and bt and set them equal to 0. Assuming
that all neurons in a single channel follow the same distribution, substituting wt and bt back into Eq. (1)
yields the minimum energy as:

e∗
t = 4

(
σ̂ 2 + λ

)
(
t − û

)2 + 2σ̂ + 2λ
. (2)

In the formula, û = 1
M

∑M

i xi and σ̂ 2 = 1
M

∑M

i

(
xi − û

)2. The lower energy e∗
t is, the greater the

differ ence between the target neuron and other neurons, indicating increased importance for visual
processing. Therefore, the importance of each neuron can be represented by 1/e∗

t . Additionall y, the
attention regula tion mechanism in the mammalian brain often manifests as a scaling effect on neurons.
Hence, a scaling operator is used to weight and refine features, as illustrated in Eq. (3).

t̃ = sigmoid
(

1
e∗

t

)
⊗ t (3)

The addition of the sigmoid function in the formula is to prevent e∗
t from becoming too large.

Since sigmoid is a monotonic function, it doesn’ t affect the relative importance of each neuron.
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2.2 SCAM
The SimAM algorithm evaluates the current neuron and other neurons based on linear separa-

bility to determine the importance of neurons, highlighting overall spatial infor mation. However, in
the process of handling neuron infor mation, the algorithm does not preserve the spatial coordinate
infor mation of neurons, which is crucial for segmenta tion tasks . Therefore, this paper proposes the
follo wing improvement strategy.

Observing all neurons on a single channel, from Eq. (1), we can derive the following expression:

1
M

M∑
i=1

(
y0 − x̂i

)2 = 1
W × H

H∑
j=1

W∑
i=1

(
y0 − x̂j,i

)2 . (4)

In the formula, x̂j,i = wtxj,i + bt. xj,i represents a neuron with height j and width i in a single
channel, where W is the maximum width and H is the maximum height of the spatial dimension in
that channel. To obtain accurate spatial position infor mation and capture long-range infor mation,
we decompose it. Specif ically, given the input feature X , each neuron in the feature undergoes a
linear transfor mation X̂ = wtX + bt, followed by taking the squar ed difference with the label y0,
resulting in y0 − X̂

2

. F inally, using pooling kernels (H,1) and (1,W) along the horizontal and vertical
coordinates, respectively, each channel is encoded. Therefore, the output at height h in the channel can
be represented as Eq. (5).

zh (h) = 1
W

W∑
i=1

(
y0 − x̂h,i

)2 (5)

Similar ly, the output at width w can be represented as Eq. (6).

zw (w) = 1
H

H∑
i=1

(
y0 − x̂j,w

)2 (6)

The two mentioned transfor mations target feature aggregation and implementa tion of corre-
sponding transfor mations for the two spatial directions (height and width), generating a pair of
direction-aware feature maps. These transfor mations allow our attention to retain accurate position
infor mation while capturing long-range feature relationships , aiding the network in more accurately
locating the target of interest.

Therefore, this paper presents a new energy formula, as shown in Eq. (7).

e
′
t

(
wt, bt, y, xh,i, xj,w

) = (
yt − t̂

)2 + 1
W

W∑
i=1

(
y0 − x̂h,i

)2 + 1
H

H∑
j=1

(
y0 − x̂j,w

)2 (7)

In the formula, t̂ = wtt + bt. xh,i and xj,w are other neurons located at the same height and width
as the target neuron t, and all values in Eq. (7) are scalars .
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Adding a regulariza tion term in Eq.(7) , the final energy function is:

e
′
t

(
wt, bt, y, xh,i, xj,w

) = (1 − (wtt + bt))
2 + 1

W

W∑
i=1

(−1 − (
wtxh,i + bt

))2

+ 1
H

H∑
j=1

(−1 − (
wtxj,w + bt

))2 + λw2
t . (8)

In the formula, λ is the regulariza tion coeff icient.
Eq. (8) assesses the importance of the current neuron based on the value of the neuron after a

linear transfor mation. Specif ically, if the value of the current neuron t is close to 1, and the values of
neurons at the same height and width as the current neuron are close to −1, it indicates that the current
neuron is more important. Therefore, the lower the value of Eq. (8), the more signif icant neuron t is
in the current task.

In theory, each channel has M energy functions, and solving all equations computa tionall y using
iterative methods like Stochastic Gradient Descent (SGD), Newton’s method, etc., can be computa-
tionall y burdensome. Fortunately, Eq. (8) can be solved for the minimum value through optimiza tion
theory, leading to the following unconstr ained optimiza tion problem min

wt ,bt
e′

t

(
wt, bt, y, xh,i, xj,w

)
.

The function e′
t

(
wt, bt, y, xh,i, xj,w

)
is twice differ entiable, and the Hessian matrix is positive semi-

definite. Therefore, e′
t

(
wt, bt, y, xh,i, xj,w

)
is a convex function, making this optimiza tion problem a

convex optimiza tion problem with a global minimum.

Setting
∂e′

t

∂bt

= 0 and
∂e′

t

∂wt

= 0, the solution is:

bt = −1
3

− 1
3

wt (u + v + t) , (9)

wt = − 2 (u + v − 2t)

(u − v)2 + (u − t)2 + (v − t)2 + 3 (α2 + β2 + λ)
. (10)

In the formula, u = 1
W

W∑
i=1

xh,i, v = 1
H

H∑
i=1

xj,w, α2 = 1
W

W∑
i=1

(
xh,i − u

)2 and β2 = 1
H

H∑
j=1

(
xj,w − v

)2.

Substituting Eqs. (9) and (10) into Eq. (8), we obtain the minimum energy formula:

e
′∗
t = 4

(
2F − (u + v − 2t)2)

3F
. (11)

In the formula, F = (u − v)2 + (u − t)2 + (v − t)2 + 3
(
α2 + β2 + λ

)
.

After obtaining the minimum energy, 1/e′∗
t is used to represent the importance of each neuron’s

position. Additionall y, Eq. (11) is for extracting spatial coordinate infor mation of the target neuron,
so it needs to be combined with SimAM’ s description of overall features. The final result is shown in
Eq. (12).

γt = 1
e′∗

t

+ 1
e∗

t

(12)
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Similar to the SimAM algorithm, the method proposed in this paper also utilizes a scaling operator
to weight and refine features.

3 Experimental Results and Analysis
3.1 Data Introduction

In this study, the debris f low fans data was obtained through the follo wing steps: first, provinces
with frequent debris f lows were selected, and relevant local disaster reduction yearbooks such as
“Sichuan Disaster Reduction Yearbook” and “Yunnan Disaster Reduction Yearbook” were consulted.
Secondl y, relevant papers and news reports on debris f lows from 2000 to the present were collected.
After sorting, a total of 749 gullies with debris f lows were identif ied, of which the fans of 31 gullies
remained undama ged. Using the coordinates of the debris f low fans, 31 high-resolution remote sensing
images with a size of 8192 × 4585 were extracted and saved.

We deter mined the specif ic extent of debris f low fans in each image through manual identif ication
and field surveys, and processed them using the L abelme tool to obtain accurate labels for the debris
f low fan images. Subsequentl y, data augmenta tion methods were applied to both the images and the
labels, resulting in 90 usable images and their corresponding label data. Fig. 1 shows a data example.

Figure 1: Example data of debris f low fans

3.2 Parameter Design and Evaluation
Metrics for ease of comparison, all experiments in this study were conducted using the PyTorch

framework. Har dware environment: CPU-Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50 GHz, GPU-
NVIDIA GeForce RTX 2080 Ti; Softw are environment: Ubuntu 18.04, Python 3.8, CUD A 11.3,
cuDNN 8, NVCC, PyTorch 1.11.0, torchvision 0.12.0, torchaudio 0.11.0. All experiments in this paper
use the cross-entropy loss function.

The Mean Intersection over Union (mIoU), Pixel Accur acy (PA), Mean Pixel Accur acy (mPA) and
F1 score (F1) are four metrics used to evalua te the classif ication perfor mance of different classif ication
methods.

The mIoU is calcula ted by taking the ratio of the intersection to the union for each predicted
category and true label. The values are summed, averaged, and then transla ted into a confusion matrix,
as shown in Eq. (13).
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mIoU =

n∑
i=1

TPi

TPi + FPi + FNi

n
(13)

In the formula, TPi represents the number of true positive predictions for the i-th class, FPi

represents the number of false positive predictions for the i-th class, FNi represents the number of
false negative predictions for the i-th class, and n represents the number of classes .

The specif ic meaning of PA is the percentage of correctly predicted pixel values out of the total
pixel values, as shown in Eq. (14).

PA = TP + TN
TP + FP + FN + TN

(14)

In the formula, TP represents the quantity of true positive predictions, FP represents the
quantity of false positive predictions, FN represents the quantity of false negative predictions , and
TN represents the quantity of true negative predictions.

The specif ic meaning of mPA is the average of the pixel accur acy for all classes . Firstl y, the pixel
accur acy for each class is deter mined, and then the sum of these accuracies is averaged, as shown in
Eq. (15).

mPA =

n∑
i=1

TPi + TNi

TPi + FPi + FNi + TNi

n
(15)

In the formula, TNi represents the quantity of true negative predictions for the i-th class.
The F 1 is a metric that measur es the similarity between two sets, with values ranging from 0 to 1.

For semantic segmenta tion tasks , it is used to evaluate the similarity between the network’s predicted
segmenta tion results and manually annota ted results. The F 1 score is equal to twice the product of
precision and recall divided by the sum of precision and recall. It can be converted to the confusion
matrix, as shown in Eq. (16).

F1 = 2TP
2TP + FP + FN

(16)

The mIoU is the average Intersection over IoU of all classes , providing an overall measur e of the
quality of the segmenta tion results. It comprehensively assesses the model’s perfor mance on differ ent
classes . PA and mPA gauge the overall accur acy of predictions , while the F 1 score measur es the
overlap between predicted results and true labels. The importance of these four metrics in semantic
segmenta tion varies, with mIoU being the most crucial, follo wed by mPA and PA, and F 1 score
consider ed least important.

3.3 Experimental Results and Analysis
To validate the effecti veness of SCAM, this study employed three typical deep learning semantic

segmenta tion models—FCN , UNet, and PSPNet—as backbone networks. The effects of applying
common attention mechanisms such as SE, CBAM, CA, and the proposed SCAM in the backbone
networks were explored. Through a compar ative analysis of four evalua tion metrics and the seg-
mentation results on test images, the study revealed differ ences between the introduction of differ ent
attention mechanisms in differ ent backbone networks.
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SCAM, along with other attention mechanism modules, was embedded in the skip-connection
part of UNet and befor e each downsampling in F CN and PSPNet. The segmenta tion results of the
test images are illustrated in Fig. 2.

Comparing the segmenta tion results between images with and without attention mechanisms,
it is evident that incorpor ating attention mechanisms is more benef icial for the network to identify
crucial regions. Observing images in the 3rd, 4th, and 5th groups, there are still issues with breakpoints
and noise points. In contrast, the SCAM method exhibits the optimal perfor mance, producing more
precise, complete segmenta tion results with reduced noise points. Looking at the 2nd group of images,
when using F CN, the CA and CBAM modules almost fail to recognize the presence of the accumulated
fan. Embedding SimAM and SCAM achieves better segmenta tion results. In the 6th group of images,
regardless of the module used, the segmenta tion of the debris f low fans is relatively good, but there
are still issues with inaccur ate localiza tion and incomplete segmenta tion. The attention mechanism
proposed in this study effecti vely addresses these problems. Examining the 1st group of images, the
segmenta tion results of all methods are suboptimal, but the approach proposed in this study still
demonstr ates relatively better perfor mance.

FCN UNet PSPNet

Serial 1 2 3 4 5 6

Label

Backbone

CA

CBAM

ECA

SE

SimAM

SCAM

Figure 2: Comparison diagram of segmenta tion results

The mIoU, mPA, PA, and F1 scores were calcula ted for the predicted images generated using
the mentioned methods on the test set, and the summariz ed results are presented in Table 1. While
embedding SCAM in various backbone networks, although the F1 score in UNet and mPA and F1 in
PSPNet are not the highest, they are close to the highest values, and all other metrics reach their peak
levels. Specif ically, compar ed to the worst results after adding attention mechanism modules in each
backbone network, in FCN , mIoU increased by 3.7%, mPA increased by 5.3%, PA increased by 11.1%,
and F 1 score increased by 6.4%. In UNet, mIoU increased by 4.1%, mPA increased by 4.3% and PA

8

X. Song and B. Wang
The segmentation of debris flow fans based on spatial coordinate attention mechanism

  Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (1), 3



increased by 1.2%. In PSPNet, mIoU increased by 9.0% and PA increased by 3.7%. When comparing
the three backbone networks without attention mechanisms, adding different attention mechanisms
may cause f luctua tions in network perfor mance. For example , in FCN , adding CA, CBAM, ECA,
SE, and SimAM attention mechanism modules all led to a decrease in the mIoU metric. However,
regardless of the backbone network, embedding the SCAM module proposed in this study improves
the network model’s perfor mance to a certain extent.

Table 1: Ev alua tion results using differ ent backbone networks and attention mechanisms

Backbone Attention
mechanism

mIoU (%) mPA (%) PA (%) F1 (%)

FCN / 79.1 86.5 93.3 87.7
CA 77.4 86.5 93.0 86.5
CB AM 76.1 87.1 82.3 85.6
ECA 76.6 88.7 92.2 86.0
SE 71.0 85.8 89.5 81.8
SimAM 77.3 89.0 92.3 86.5
SCAM 79.8 91.1 93.4 88.2

UNet / 80.5 87.7 94.2 88.8
CA 81.7 87.8 94.7 87.7
CB AM 82.7 89.1 95.0 89.0
ECA 82.9 88.4 95.2 86.1
SE 81.7 88.7 94.8 89.1
SimAM 81.2 90.5 94.2 87.5
SCAM 84.6 92.0 95.4 89.0

PSPNet / 76.5 88.9 92.0 87.0
CA 73.5 84.9 91.2 84.8
CB AM 79.4 87.7 93.7 89.0
ECA 81.8 90.6 94.4 90.3
SE 73.7 84.1 91.5 85.0
SimAM 80.3 87.1 94.2 89.2
SCAM 82.5 89.3 94.9 90.1

The above results indicate that in the task of debris f low fans segmenta tion, SCAM exhibits
signif icant advantages compar ed to similar attention mechanism algorithms . It can effecti vely enhance
segmenta tion accur acy and overall perfor mance.

3.4 Further Discussion
In order to systema ticall y investiga te the superiority of the SCAM attention mechanism, we

comprehensively evaluated its perfor mance through the loss change curve during training, heat maps
generated by Grad-CAM, the specif ic values of parameter A in the energy function and its impact
on network perfor mance, as well as the computa tional and parameter size of SCAM. This thorough
anal ysis provides insights into the practical perfor mance of SCAM.
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Accor ding to Figs . 3 and 4, we observ e a high consistency in the training set loss curve of the
network embedded with SCAM during the training process. However, on the valida tion set, the
network embedded with SCAM exhibits lower loss values and greater stability.

Gr ad-CAM highlights the image areas the network focuses on by computing gradient weights. In
the heatmap, the redder the color, the more attention it receives. Accor ding to Fig. 5, we observe that
after integrating SCAM, the network focuses on signif icantly larger key regions. It pays more attention
to the area where the debris f low fans is located and presents it in a fan-sha ped pattern. This alignment
is consistent with the shape of the debris f low fans. This result indicates that the introduction of SCAM
effecti vely improves the network’s ability to recognize key areas.

0

0.2

0.4

0.6

0.8

1

1.2

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541 571

FCN

FCN+Ours

UNet

UNet+Ours

PSPNet

PSPNet+Ours0

0.1

0.2

0.3

500 520 540 560 580 600

Figure 3: Comparison diagram of training set loss
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1

1.2

1.4
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UNet

UNet+Ours
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PSPNet+Ours
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0.2

0.4

0.6

0.8

500 520 540 560 580 600

Figure 4: Comparison diagram of valida tion set loss
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(a) FCN
(b) FCN

+SCAM
(c) UNet

(d) UNet

+SCAM
(e) PSPNet

(f) PSPNet

+SCAM

Figure 5: Comparison diagram of Grad-CAM

Accor ding to the data in Table 2, we can clear ly see that embedding SCAM does not lead to
an increase in the number of network parameters. However, it does result in a slight increase in
computa tional complexity. Considering the signif icant improvement in network perfor mance with
SCAM, this minor increase in computa tional complexity can be consider ed negligib le.

Table 2: FL OPs and Params of SCAM and typical attention mechanisms

Attention mechanisms FL OPs (G) Params (M)

CA 0.142 1.917
CB AM 0.041 2.516
ECA 0.029 0
SE 0.034 5.030
SimAM 0 0
SCAM 0.120 0

Fig. 6 presents the results of four evalua tion metrics on the training set using different values for
λ. Due to the difficulty in valida ting all possib le values of λ, we set the range of λ values from 10−1

to 10−5. B ased on Fig. 6, it can be clear ly concluded that utilizing this module significantly enhances
network perfor mance.

Figure 6: (Continued)
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Figure 6: Comparison diagram of evaluation indicators with differ ent values of λ

4 Conclusion

This paper addresses the limitations of the SimAM attention mechanism in extracting spatial
infor mation from feature spaces. It proposes an optimiza tion strategy that incorpor ates spatial
coordinate infor mation, making it easily implementa ble through optimiza tion theory while ensuring
lightw eight module design and high eff iciency.

In the task of debris f low fan segmenta tion, six attention mechanisms (CA, CB AM, ECA,
SE, SimAM, and SCAM) are embedded into differ ent backbone networks. Through experimental
observ ations, SCAM demonstr ates superior perfor mance. SCAM effecti vely addresses noise and
discontinuity issues, achieving precise localiza tion of debris f low fans and generating more complete
and accurate segmenta tion results. Detailed discussions and studies on SCAM are also conducted in
this paper. SCAM still has certain limitations, as its perfor mance heavily relies on the effecti veness of
the appropria te selection of parameter λ. Training with inappropria te parameters may significantly
deviate from expected results. Addressing these issues, we have identif ied them as key directions for
future improvements.

The proposed method extends the segmenta tion and recognition techniques for debris f low fans,
contrib uting to the development of theories in this field. It has profound implications for the study
of debris f low geomorphic processes, as well as for the assessment of debris f low hazar ds and the
selection of monitoring and warning areas.
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