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Summary. Reduced Order Models are applied to predict pressure distributions on a civil air-
craft, at various combinations of Mach number and angle of attack. The efficiency of a pointwise
method (computing individual Cp values from the wall point location and the flow conditions)
and several modewise methods (computing wall Cp distributions from the flow conditions) in-
cluding POD, IsoMap, Diffusion Map and Autoencoder, is assessed and discussed.

1 INTRODUCTION

ONERA’s activities on parametrized CFD problems date back as far as the mid-80’s when
local shape optimization of airfoils were performed using finite-difference gradients [1, 2]. Since
that time, of course, local shape optimizations were done based on (discrete) adjoint gradients
[3, 4] regularly considering tens and hundreds of design parameters for 2D and 3D complex con-
figurations [5, 6]. Fundamental properties of the adjoint method were also studied – [7, 8, 10, 11]
– as well as global optimisation algorithms – [9] and references therein.
Besides, since the mid-2000’s, Uncertainty Quantification problems have been considered, start-
ing with basic tests and now dealing with realistic manufacturing tolerances / variations of
operating conditions for performance assessment. Currently, polynomial chaos defined by (pos-
sibly gradient-enhanced) collocation techniques is the preferred method and its evaluation of
standard deviation will soon be involved in robust optimizations [12, 13].
Since the internal project PR Chyne (2014-2017) and the EG67/AG60 GARTEUR initiative
(2019-2023) [15], Reduced Order Models (ROM) of industrial CFD/EFD outputs as function of
flow conditions, is a further topic of interest in the field of parametrized fluid dynamics. The
current study focuses on the behavior and performance of a series of ROM for the reconstruction
of parietal flows about the XRF1 civil aircraft configuration [14].

2 DATASET

The dataset for the comparison regression methods is one of those provided by Airbus-M
in the framework of the AG60 Garteur group [15]. Various wing-body CFD calculations were
performed by Airbus-M with the DLR TAU code for a XRF1 model in a wind tunnel (XRF1
configuration [14] is close to a long range wide body Airbus aircraft). Whatever the detailed
geometric configuration (with or without vertical tail plane, horizontal tail plan or sting), the
final provided data were Cp coefficients on the wing of the aircraft. The three provided sets
of calculation outputs have been divided by INTA in four couples of (learning, testing) data in
order to define as many regression exercises [15]. For the current study, we retain a set with
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Figure 1: XRF1 flow conditions. Training and testing sets

consistent Reynolds numbers, varying (M∞, AoA) and with same location of the data points
on the wing for all flow conditions. More precisely N = 112926 Cp values are available for
np = 426 flow conditions. Those have been divided in nt=408 conditions for training and nv=18
for testing the accuracy of the various regressors.
For sake of generality, in the following, one (M∞, AoA) flow condition is denoted p (parameters
of the regression) and the parameter space is denoted P. A Cp value is denoted y, a Cp
distribution is denoted y (vector of size N) and the complete set of training Cp distributions
is denoted Y (matrix N × nt). The coordinates of individual wall points appear in pointwise
regressors; they are denoted c.
As the data generating process of y is governed solely by the p 2-dimensional variable, we note
that all the N -dimensional data points yi must lie on a 2-dimensional manifold Y embedded in
RN .

3 REGRESSION METHODS

3.1 Reference methods

A first approach in predicting a local y∗ or a complete wall distribution y∗ for an unseen
flow condition p∗ may have been to use a classical interpolation technique such as Radial Basis
Functions (RBF) or Kriging/Gaussian Process Regression (GP). Unfortunately N×nt is several
orders of magnitude too high to search for pointwise regressors defining y as function of (p, c) (the
linear system to solve would be of intractable size). Defining N classical (pointwise) surrogates
for nt data would be feasible although very expensive, but the surrogates for neighboring points
may not be consistent with each other. For these reasons, we consider two other basic methods
as reference for the performance of more sophisticated ones.

3.1.1 Reference method 1: kNN interpolation

The first method consists in computing y∗ for unseen flow conditions p∗, by performing a
linear combination of the yi vectors corresponding to the kP nearest neighbours (kNN ) of p∗ in
the parameter space,

y∗ = fkNN
(p∗) =

∑
i∈N (p∗)wiyi∑
i∈N (p∗)wi

. (1)

Equation (1) formalises the methodology, denoting the indexes of the k nearest neighbours of
p∗ by N (p∗), and the inverse of ||pi − p∗|| (the Euclidean distance between p∗ and one of the
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Figure 2: MLP Modewise model. Flow conditions p∗ are mapped to their corresponding pressure
distributions y∗.

nearest points pi of the training set) by wi . This method does not involve any analysis of the
output data and is hence unable to account for any non linearity of y as function of p. It is only
accurate (and even exact) if y is an affine function of p, which is obviously not the case when
the discrete (RANS) equations are involved to derive y from p.

3.1.2 Reference method 2: MLP modewise

A second simple solution to the approximation problem is provided by a technique from the
field of Deep Learning called Multi Layer Perceptron (MLP). A MLP is a model that aims to
approximate a function f . It achieves so by defining a parametrized regressor

y = f̂MLP (p, θ)

and learning the values of the inner parameters θ that result in the best approximation of f
for the known (pi,yi) data points [16]. More precisely, a MLP is defined by composing affine
transformations xl = Wxl−1+b of the previous layer data with simple nonlinear functions such
as tanh. Repeating this building block multiple times (hence the name ”Deep Learning”) yields
the MLP architecture, where the aforementioned inner parameters θ are the weights, W, and
the shifts, b, of the successive layers. In order to learn suitable values of these inner parameters,
an optimisation algorithm based on the gradient of a loss function is applied.
At this stage, a MLP was trained to map the Y pressure distribution space from the P parameter
space. This involves a very large number of weights between the last inner layer and the y
output layer but is sustainable with current CPUs. A visual representation of the above model
is presented in Figure 2. (See besides §3.5 for a pointwise MLP.)

3.2 Dimensionality reduction coupled with regression

A different approach consists in initially compressing the high dimensional pressure distribu-
tions yi ∈ RN into a low dimensional representation zi ∈ Rr (r << N), using a dimensionality
reduction function g(yi). The advantage of this pre-processing step is that in Z ⊂ Rr, also
known as the latent space, performing an interpolation z∗ = f(p∗) with regular methods (RBF,
GP...) becomes feasible. After interpolation, the data is mapped back to the high dimension
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Figure 3: General principle of ROM involving dimensionality reduction.

using a reverse mapping function h(z∗). The entire modelling process is summarized in Figure
3.

For several methods, it is necessary to perform some type of interpolation in the high di-
mensional space Y from the latent space Z, as no exact reverse mapping h∗ is defined by the
mapping process. The needed additional interpolation hint(z

∗) : Rr → RN may seem redundant,
but it can still be beneficial to perform dimensionality reduction: specific structural features
of the high dimensional data y are preserved in the low dimensional representation z and can
be exploited to design more precise interpolation algorithms. This idea is applied in §3.4.1 and
§3.4.2.

3.3 Linear dimensionality reduction (Proper Orthogonal Decomposition) plus In-
terpolation

Proper Orthogonal Decomposition (POD) [17] is a standard dimensionality reduction tech-
nique in fluid mechanics. POD firstly performs a Singular Value Decomposition (SVD) of the
output matrix Y ∈ RN×nt :

Y = U Σ ZT (2)

where Σ is a (N,nt) matrix with only diagonal and positive non-zero entries, and U,ZT are
two orthonormal matrices of respective sizes (N,N) and (nt, nt). Subsequently, downsizing each
matrix to only contain the components linked with the biggest r singular values yields a reduced
rank-r representation of Y.

Yr =
r∑

k=1

σkukz
t
k = UrΣrZ

T
r (3)

where σk represents a diagonal element of Σr, uk represents a column vector of Ur, and ztk
represents a row vector of ZT

r . POD can be interpreted in two fundamental ways:
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1. Physics: POD aims to extract the set of most significant pressure distribution ’modes’
uk from the available data Y; such ’modes’ can then be used as a basis to represent the
original data.

2. Manifold Learning: POD performs a projection of the original manifold Y onto a r-
dimensional hyperplane that is optimal in the Frobenius norm sense, meaning that the
reconstruction error ∥Y − Yr∥F is minimised. The columns uk of Ur represent the ba-
sis in the r-dimensional plane, while the i-th column of Zr

T corresponds to the latent
representation (the coordinates) of the distribution yi on the r-dimensional plane.

Following the blueprint of Figure 3, once the latent representation {zi} is extracted, r interpola-
tors (GP, RBF or any other surrogate) are used to define all r latent coordinates z∗ of an unseen
parameter p∗. Finally, the high dimensional y∗ is reconstructed from its latent representation
by substituting z∗ in Equation (3).

y∗ = UrΣrz
∗ (4)

POD is a powerful technique that yields an exact (lossless) embedding when the {yi} lie in
a r-dimensional vector space. At the same time, its weakness lies in the linear nature of the
projection it applies. This does not usually pose a problem in the subsonic regime, but, in the
transonic regime, when strong nonlinearities appear, Y becomes unfit to be represented by a
linear projection.

3.4 Non-Linear dimensionality reduction coupled with regression

3.4.1 Isomap

A better fitting method for more complex manifold geometries is Isomap [18], which can
be intuitively understood as an attempt to isometrically ”unwrap” twisted manifolds. More
specifically, the Isomap algorithm consists of three steps:

1. Constructing the kNN graph of the data points {yi}.

2. Constructing the matrix DG by approximating geodesic distances DGij = dG(yi,yj) be-
tween data points on Y as the shortest path in their kNN graph, using methods such as
the Dijkstra algorithm.

3. Applying classical Multi Dimensional Scaling (MDS) [19] to the matrix DG, in order to
obtain a low dimensional embedding {zi} in Rr.

In MDS the matrix of scalar products B is first computed by

B = −1

2
H(DG ⊙DG)H (5)

where H = Int − nt
−1Jnt is a centering matrix, Jnt being a nt × nt matrix of ones, and ⊙ is the

Hadamard product. Afterwards, similarly to POD, diagonalising B = ZΛZT and downsizing
each matrix to only include the r most significant components yields a low dimensional embed-

ding, given by the columns zi of Λ
1/2
r ZT

r .
MDS guarantees that the matrix DZ , whose entries are given by DZij = ||zi − zj ||, is the best
rank r approximation of DG, minimizing ∥DG −Dz∥F . This justifies the name ”Isomap”: the
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algorithm learns a discrete low dimensional embedding {zi} of Y that has the property of being
as isometric as possible with respect to the original manifold.
After having obtained the latent coordinates {zi} of the training data, the interpolation proce-
dure is carried out in a standard way (using GP, RBF...) to obtain z∗. When having to reverse
the mapping to obtain y∗, the encoding of the data into DG makes it impossible to derive an
explicit analytical form such as the one of POD in (4). Two alternative solutions for h are
explored:

1. A first approach, based on [20], takes profit of the approximate isometry between the
latent space Z and the output space Y. It consists in reporting in the output space a kNN

interpolation or a first-order Taylor formula satisfied in the latent space. In the former
case, an optimal linear combination is searched for:

Min w∗ ∥z∗ −
∑

i∈N (z∗)

w∗
i zi∥+ λ

∑
i∈N (z∗)

w∗2
i (6)

s.t.
∑

i∈N (z∗)

w∗
i = 1 (7)

where the regularisation term in (6) is required as multiple solutions exist when the number
of elements in N (z∗) is greater than r, and N (z∗) represents the indexes of the kZ nearest
neighbours of z∗. After solving (6) (7), y∗ is predicted using the w∗

i weights,

y∗ =
∑

i∈N (z∗)

w∗
i yi, (8)

consistently with local isometry.

2. A deep learning based method may be used to map the zi to the yi, discarding at this
stage the isometry property.

It is important to note that, as per Gauss’s Theorema Egregium, exact isometric embedding of Y
in dimension r = 2 exists only for manifolds presenting zero Gaussian curvature at every point.
For any other Gaussian curvature case, Isomap can only provide the Euclidean representation
of Y that is closest to an isometry.

3.4.2 Laplacian Eigenmaps and Diffusion Maps

While Isomap focuses on achieving global isometry, other methods aim to preserve local
structure, following the hypothesis that high correlations (i.e. small distances) represent the
only meaningful information on the data set. This is the case of Laplacian Eigenmaps [21], a
technique that works by minimizing the quantity:∑

i,j

∥zi − zj∥2Wij (9)

where Wij = e−
∥yi−yj∥

t is the heat kernel if yi and yj are connected in the symmetric kNN graph
G, and Wij = 0 otherwise. Equation (9) minimises the distance between two points in Z with
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increasing importance for close corresponding points in Y.
With reasonable constraints to remove scaling factors, minimizing (9) is equivalent to finding the
matrix of eigenvectors Zr corresponding to the r smallest eigenvalues (excluding the first one,
which is always zero in the case of a connected graph) of the following generalised eigenvalue
problem:

Lz = λDz (10)

where D is the degree matrix of G, W is the matrix of Wij and L = D − W is the graph
Laplacian. The low dimensional embedding {zi} satisfying (9) is given by the rows of Zr.
The efficiency of Laplacian Eigenmaps comes from its connection with the Laplace-Beltrami
operator L, which acts on manifolds and of which L is a discretisation in the case of datapoints
uniformly distributed on the manifold surface. In the (frequent) case of non uniformly distributed
datapoints, L is no longer a good discretisation of L, and a generalisation of Laplacian Eigenmaps
called Diffusion Maps [22] can be utilised to recover a correct discretisation. Diffusion maps
define a diffusion matrix as:

L(α) = D−αLD−α (11)

and a new degree matrix D(α) such that D
(α)
ii =

∑
j L

(α)
ij . The parameter α controls the influ-

ence of the datapoints’ density, with α = 0 simplifying to L, and α = 1 defining the proper
discretisation of L. Substituting L(α) and D(α) in (10) yields the Diffusion maps embedding.
In both cases, after a latent representation is obtained, the blueprint of Figure 3 is applied.
Regarding the interpolation, the reverse mapping procedures presented in §3.4.1 for Isomap are
used.

3.4.3 Autoencoder

An autoenconder (AE) [23] is a specific type of MLP that can learn nonlinear low dimensional
representations of a given dataset. An AE, denoted fAE , can be thought of as the sequential
application of two network sub-parts, divided by a low dimensional layer z: an encoder network
z = gAE(y), and a decoder network hAE(z), so that fAE(y) = hAE(gAE(y)) = hAE(z). The
working principle of an AE consists in training the network to reconstruct its own inputs:

ŷi = fAE(yi) = hAE ◦ gAE(yi) ≃ yi

While a regular MLP would just learn the identity function, the presence of the z layer forces
the AE to learn how to extract a low dimensional representation of y, as the sequentiality of
the layers means that the reconstruction process has to be based solely on z.
The high complexity of the loss landscape of an AE makes the training process prone to learning
suboptimal parameters. Additionally, as many low dimensional representations may exist, an
AE may learn a specific z = gAE(y) that is not optimal for latent space interpolation.
A Variational Autoencoder (VAE) [24] is a probabilistic generalisation of the AE that, amongst
many other features, achieves a regularisation of the latent space. A VAE works by considering
the joint probability distribution pθ(y, z) = pθ(y|z)p(z), whose parameters θ are given by a
MLP (equivalent to the decoder network of the AE architecture). VAE attempts to solve the
intractable Bayesian inference problem of finding pθ(z|y) by approximating it with a probability
distribution qϕ(z|y), parametrised by a second MLP (equivalent to the encoder of the AE). This
setup allows a VAE to effectively learn an approximation qϕ(z) of the probability distribution
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Figure 4: MLP Pointwise model. Flow conditions and point coordinates (p∗, c∗n) are mapped to the
corresponding Cp value y∗n.

of the latent variable z, thus generalising the latent space concept of an AE. The characteristics
of qϕ(z) are strongly influenced by the choice of the prior p(z). More specifically, in the case
of p(z) ∼ N (0, I), the learned probability distribution is regularised to be smooth, bound by a
r-ball of center zero, and to have mutually independent z coordinates. These are all desirable
features for the task of interpolating in Z.
In order to predict y∗, the blueprint of Figure 3 is followed. Interpolation on the zi is carried
out in the standard way using RBF; subsequently the decoder network hAE is applied to z∗ to
obtain y∗ (given by E[y|z = z∗] in the VAE case).

3.5 Pointwise approach

The entirety of the methods presented above make use of pressure distributions yi ”flattened”
as N -dimensional vectors. This preprocessing procedure reduces the original data, in the sense
that the spatial position of each pressure extraction point yn in the physical world is lost; the
only constraint in the modewise methods of §3.1 to §3.4 being to always order consistently the
y values.
To aid the regression model to better generalize to unseen flow conditions, it can be made more
descriptive by incorporating geometric information: the coordinates c of the pressure points may
be joined to the parameters p as inputs of so-called ”pointwise methods” – see also Deepsets
architecture [25]. Locations and flow conditions are then seen as equivalent inputs from a
Machine Learning point of view, whereas from a Mechanical point of view they definitively are
not (part of the flow conditions can possibly be discarded from a study, whereas the complete
wing geometric domain is always needed).
Practically, the method consists in training an MLP regression model fMLP : R5 → R that
predicts each yn from its coordinates cn and the parameters p. A visual representation of the
MLP pointwise model is presented in Figure 4.
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4 RESULTS

After coding and training all the presented methods for the training set (nt = 408 XRF1
wing pressure distributions), the R2 scores,

R2 = 1−

 nv ,N∑
v=1,j=1

(yv,j − ŷv,j)
2

 /

 nv ,N∑
v=1,j=1

(yv,j − y)2


were calculated for the testing set (nv = 18 distributions). Results are shown in Table 1.
The scikit-learn library [26] was utilised to carry out the implementation of all methods; the
Pytorch library [27] was also leveraged for the implementation of all deep learning methods. (As
usually done, all methods were applied to normalised input data.)

4.1 Method specific parameters

In this study, the hyperparameters of the ROMs have been optimized to get the best per-
formance on the test set, establishing their best possible accuracy. In future studies, all hyper-
parmeters shall be optimized using a reserved part of the training data –[15] §3.

• (Control case) kNN regression: The number of neighbours was optimised by grid search
and chosen to be kP = 8.

• (Control case) MLP modewise: 4 hidden layers of size (384, 309, 249, 204) were used. It
was observed that increasing the number of layers did not improve performances. The
activation function was tanh. Adam optimiser was used to decrease a standard MSE loss
with L2 weight regularisation (coefficient α = 10−4/nt).

• Proper Orthogonal Decomposition: r = 307 modes were extracted to satisfy the classical
99% criterion on the sum of the Σ eigenvalues. RBF and GP for interpolation from P to
Z lead to equivalent results.

• Isomap: The latent dimension r, the number of neighbours k in the kNN graph construc-
tion, and the size of the reverse mapping neighbourhood kZ were considered as parameters,
and optimised using grid search. The selected values were r = 5, kY = 14 for the definition
of DG and kZ = 10 for the backmapping.

• Laplacian Eigenmap and Diffusion Map: The latter performed better, leading to its se-
lection. For Diffusion Maps, the same parameters as those of Isomap were considered,
and the grid search yielded r = 60, kY = 200 for the definition of L, kZ = 13 for the
backmapping.

• Autoencoder and Variational Autoencoder: The same architecture and hyperparameters
were used. In both cases, a 3-hidden-layer encoder with layer sizes (1000, 200, 50) was
selected, followed by one low dimensional layer of size r and a symmetrical decoder. The
value of r was optimised using grid search leading to r = 5. Finally, the same loss function
as in the MLP modewise case was utilised for the AE, while the classical Kullback–Leibler
divergence term was added in the VAE case. Both models were trained using early stop-
ping. In the specific case of VAE, the pθ(y|z) and qϕ(z|y) were chosen to be respectively
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N (hθ(z), σ
2I) and N (gϕ1(y), gϕ2(y)I), where gϕ1 and gϕ2 are two encoders that only differ

in the parametrisation of the last layer. Finally, the prior was taken to be p(z) ∼ N (0, I)
as presented in §3.4.3.

• MLP pointwise: a 3-layer network with (50, 55, 60) neurons was used (no improvement with
more layers or neurons). The same optimization and activation function were selected as
for MLP modewise. As the training set for the method is very large (size N × nt), a
division of the loss in batches of 100 was implemented. Training was performed with early
stopping and it was noted that the model performance converges quite fast, reaching a
R2 ≃ 0.90 after a single epoch.

4.2 Performance Comparison

It is noteworthy that only Isomap, MLP modewise, and MLP pointwise perform above the
very basic kNN interpolation of outputs from the parameter space.
The underperformance of POD and the better performance of Isomap hints to the structure of
Y being highly nonlinear. It is also noted that dimensionality reduction models with stricter
inductive priors, such as Isomap, performed better than more general models such as AE, VAE
or Diffusion Maps (which can, to an extent, be considered as a relaxation of the global isometry
principle of Isomap). One of the reasons of such divide could also be the ease of training an
Isomap model, which requires significantly fewer hyperparameters than AE or VAE .
Finally, the clear superiority of the MLP pointwise approach in terms of R2 performance suggests
that integrating various aspects of the physical process of interest in the regression model can
be highly beneficial.

Table 1: R2 values for each of the methods considered in the study

Basic Methods R2 score RedDim Methods R2 score

(Control) kNN Regression 0.865 POD 0.845

(Control) MLP Modewise 0.872 Isomap 0.876

MLP Pointwise 0.923 Diffusion Maps 0.857

AE 0.861

VAE 0.864

5 PERSPECTIVES

A large number of Reduced Order Models has been tested on an approximation exercise of
GARTEUR group AG60 based on the XRF1 model. Considering the results, future work will
focus on further analysing pointwise methods, involving not only the local coordinates but also
the local normal vector in the inputs of the network. Mesh information and local exchanges
between neighboring points (mimicking the dependencies of an explicit scheme) may even be
included in further steps. Although basic kNN interpolation of pressure distributions from the
parameter space performed surprisingly well, we suspect that all methods (with or without
dimensionality reduction) involving a linear combination in Y can not perform excellently when
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transonic flows are involved. Therefore, methods defining transformations of the state variables
inside the fluid domain, like Optimal Transportation methods [28], will also be considered in the
future.
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[1] Reneaux J. Méthode de définition de profils par optimisation numérique. La Recherche
Aerospatiale 5:303–321. 1984.

[2] Reneaux J., Thibert; J.J. The use of numerical optimization for airfoil design. AIAA paper
series, Paper 85-5026. 1985.

[3] Peter, J., and Dwight., R.P. Numerical sensitivity analysis for aerodynamic optimization:
a survey of approaches. Computers and Fluids, 39:373–391, 2010.
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