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Abstract. Reynolds’ hydrodynamic lubrication theory has been used extensively to analyze and 
quantify thin film manufacturing1.  Applications span liquid flows in bearings, coatings, and 
molds, and gas flows between rigid or elastic surfaces.  To enable further applications of 
efficient, reduced-order modelling, we pursue streamlined algorithms for non-Newtonian 
liquids in marginally “thin” geometries with multiple phases and capillarity.  The goal is 
expanded use of “modified”, non-traditional lubrication methods to bring physics-based 
knowledge to bear in process design, optimization, and control methods. 

Reynolds’ lubrication applies to Newtonian fluids through thin flow channels.  
Accommodation for non-Newtonian flow behavior via generalized Newtonian constitutive 
relations can be achieved with the aid of variable transformations.  The known stress-rate 
relation for a particular non-Newtonian rheological model can be transposed to yield pressure-
drop/flowrate relationships of non-Newtonian lubrication flow.  For non-moving boundaries, 
non-Newtonian lubrication can be formulated as one mass conservation and one momentum 
balance equation.  When one or more channel boundaries are moving, the momentum balance 
expands to three equations to fully capture the shear-rate coupling between different 
momentum transport mechanisms. 

For marginally high aspect-ratio flow channels, side walls exert significant drag on the flow 
that is not present in Reynolds’ theory.  An effectively lower liquid permeability instituted 
through a wall distance function suitably captures sidewall drag. Liquid-gas interfaces in filling 
applications are captured using level set tracking.  Surface tension forces for high and medium 
Capillary Number flows are an additional lubrication modification.  By combining an 
analytical thickness direction curvature with an in-plane level-set curvature field, wetting and 
de-wetting behavior are added to reduced-order lubrication modeling. 

Non-Newtonian rheology, sidewall drag, and capillary forces are added to make a 
“modified” lubrication model.  The resulting reduced dimensionality (3D flow problems are 
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reduced to 2.5D) promises a “step change” in model efficiency leading to increased capability 
for model size and complexity. We demonstrate this reduced order method on the flow of 
Newtonian and shear-thinning liquids through a patterned channel and find good agreement 
compared to a fully three-dimensional approach. 
 
1 INTRODUCTION 

Coarse-graining or reduced-order modelling of liquid flows in manufacturing almost always 
relies on Reynolds’ hydrodynamic lubrication theory.  Lubrication here refers to flowing liquid 
through thin channels, that is, one channel dimension, the gap, is much smaller than the other 
two, length and width.  The bounding surfaces that form the thin channel can be rigid or 
deformable.  Reynolds’ lubrication considers isothermal, Newtonian flow through the thin 
channel and finds application in coating, bearing, calendaring, and film extrusion flows as well 
as filling molds and other cavities.  For incompressible flow through a channel of gap, H(x,y), 
and impenetrable upper and lower boundaries, it has the following form. 

𝛁𝑰𝑰 ∙ ቂ−
ுయ

ଵଶఓ
𝛁𝑰𝑰𝑝 +

ு

ଶ
(𝑼 + 𝑽)ቃ = 0  (1) 

Here μ is the Newtonian viscosity and p is the liquid pressure, while the geometry is depicted 
in Figure 1.  The lubrication plane is a x-y plane in a x-y-z Cartesian coordinate system spanning 
the width and length of the channel.  The two-dimensional lubrication plane gradient, 𝛁𝑰𝑰 ≡

𝒊
డ

డ௫
+ 𝒋

డ

డ௬
, is the gradient in the lubrication plane and the z-coordinate spans the channel gap 

perpendicular to the lubrication plane.  U and V are the vector velocities of the upper and lower 
surfaces in the lubrication plane. 

Roberts et al.1 described expansions to Reynolds’ lubrication in applications to multiphase 
flow using a three-dimensional shell finite element method.  The level-set method captured 
liquid-gas interfaces between phase regions in the channel and a continuous surface force tensor 
formulation quantified interfacial forces.  In addition, fluid-structural interactions were 
captured between the lubrication flow and elastic deformation of the solids forming the channel. 

We propose further expansions of lubrication methods in the areas of non-Newtonian 
rheology and “not so” thin or wide channels in a similar multiphase context.  The goal is to 
create efficient algorithms for applications technically beyond the confines of lubrication to 
bring physics-based knowledge to the design, optimization, and control of complicated 
manufacturing processes. 
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Figure 1: Lubrication flow geometry. 

2 GENERALIZED NEWTONIAN LUBRICATION 

Reynolds’ lubrication theory is restricted to Newtonian flow where the fluid viscosity is 
constant.  Generalized Newtonian constitutive relations accommodate viscosity functions that 
depend on the local deformation rate, but in lubrication analyses the local deformation rate is 
not known a priori.  Fortunately, the known stress-rate relationship inherent in the Generalized 
Newtonian constitutive relation can be utilized via variable transformations to deduce the 
overall flowrate vs. pressure gradient relationship, i.e., the “flow curve”.2 The flow curve for 
Generalized Newtonian fluids bears a striking resemblance to their viscosity curve, i.e., the 
viscosity vs. shear rate dependence, if it is scaled appropriately.  An example is shown in Figure 
2 for a Carreau-Yasuda fluid (cf. Bird et al., p. 171).3 This similarity suggests a direct 
relationship between the two.  The shear stress exerted on the walls of a thin channel is directly 
related to the flow direction pressure gradient, 

𝜏௪ =
𝐻

2
|𝛁𝑰𝑰𝑃|. 

(2) 

Here ∇ூூ𝑃 is the pressure gradient in the plane of the thin channel, where P is the liquid pressure 
modified for the effect of gravity.  Under lubrication conditions, any flow perpendicular to the 
channel plane is quite small in relation to the length and width direction consistent with very 
small pressure variation in the thickness direction, i.e., ௗ௉

ௗ௭
≈ 0.  The flow vector, 𝒒 ≡ ∫ 𝒗𝑰𝑰𝑑𝑧, is 

the integrated fluid velocity across the channel gap and is sensibly the flowrate per unit width 
through the channel.  Since it is directly related to fluid velocity, there is only an indirect 
relationship to the shear rate in the channel.  Integration by parts applied to the flow vector 
definition makes this clearer, 

𝒒 = 𝒗𝑰𝑰|௭ୀுಽ

௭ୀுೆ − ∫ 𝑧
డ𝒗𝑰𝑰

డ௭
𝑑𝑧  (3) 

The subscripts U and L refer to the upper and lower bounding surfaces of the lubrication 
channel.  Sensibly the local shear rate in the channel will be small in the center of the channel 
and have the highest magnitude at the channel walls.  As the degree of liquid shear-thinning 
increases, the wall shear rate also increases for a given flowrate.  The magnitude of the flow 
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vector is strongly correlated with wall shear rate, but the precise relationship depends on the 
viscosity function and magnitude of stress causing the flow, i.e., wall shear stress or channel 
pressure gradient. 

 
Figure 2 – Comparison of the viscosity curve (left) of a Carreau-Yasuda fluid to the corresponding flow curve 

(right) in a thin channel.  The Carreau-Yasuda parameters are 𝜂଴=100 Pa-sec, n=0.25, λ=1.0 sec, p=3, and 
𝜂ஶ=0.1 Pa-sec.  The flow curve is calculated for a channel gap of 0.050 mm. 

2.1 One-dimensional Generalized Newtonian Lubrication Flow 

Fortunately, the precise flow curve relationship for Generalized Newtonian fluids can be 
deduced from the viscosity function and mass and momentum balances integrated across the 
lubrication channel gap.  For incompressible flow, the integrated conservation of mass (also 
volume) proceeds as follows. 

න ൤
𝜕𝜌

𝜕𝑡
+ 𝜌∇ ∙ 𝒗൨ 𝑑𝑧 = 0 = 𝐻

𝜕𝜌

𝜕𝑡
+ 𝜌 ቈ𝛁𝑰𝑰 ∙ න 𝒗𝑰𝑰𝑑𝑧

ுೆ

ுಽ

቉ = 𝐻
𝜕𝜌

𝜕𝑡
+ 𝜌𝛁𝑰𝑰 ∙ 𝒒

ுೆ

ுಽ

 
(4) 

Here H is the lubrication channel gap, 𝐻 ≡ 𝐻௎(𝑥, 𝑦) − 𝐻௅(𝑥, 𝑦), and 𝒗(𝑥, 𝑦, 𝑧) is the general 
three-dimensional velocity field while 𝒗𝑰𝑰(𝑥, 𝑦) refers to dominant velocity in the lubrication 
plane, i.e., ignores the 𝑣௭ component.  The channel walls, located at 𝑧 = 𝐻௎(𝑥, 𝑦) and 𝑧 =

𝐻௅(𝑥, 𝑦), have been assumed to be impenetrable above.  Likewise, under lubrication conditions, 
i.e., thin channel and only modest gap changes, the lubrication plane momentum balance has 
the following form 

(𝑧 − 𝑧଴)𝛁𝑰𝑰𝑃 = 𝝉௭,ூூ = 𝜂(|𝑳(𝑧)|)𝑳(𝑧), 𝑳 ≡
𝜕𝒗𝑰𝑰

𝜕𝑧
  𝑜𝑟  𝐻𝛁𝑰𝑰𝑃 = 𝜂(|𝑳௎|)𝑳௎ − 𝜂(|𝑳௅|)𝑳௅ 

(5) 

𝑧଴ is the location of the lubrication plane and 𝐿 is the out-of-plane velocity gradient, which is 
the dominant component.  The in-plane components, 𝐿ூூ,ூூ, are sensibly of much lower 
magnitude given the channel dimensions. 

If the walls of the lubrication channel are stationary in the lubrication plane, the flow within 
is one-dimensional.  The only driving force for flow is the pressure gradient and the flow must 
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be directed in the opposite direction to that of the pressure gradient, denoted by the unit vector 
e below and the scalar L is the velocity gradient magnitude. 

𝒒 = −𝑞𝒆 , 𝒆 ≡
𝛁𝑰𝑰𝑃

|𝛁𝑰𝑰𝑃|
, 𝐿 = |𝑳| = ඨ൬

𝜕

𝜕𝑧
𝒊 ∙ 𝒗𝑰𝑰൰

ଶ

+ ൬
𝜕

𝜕𝑧
𝒋 ∙ 𝒗𝑰𝑰൰

ଶ

 

(6) 

The flow is symmetric in the gap direction and velocity gradient at the upper and lower surfaces 
are equal in magnitude and opposite in sign. 

𝒒 = − න 𝑧
𝜕𝒗𝑰𝑰

𝜕𝑧
𝑑𝑧

ுೆ

ுಽ

,     𝑞 = −2 න 𝐿𝑧𝑑𝑧

ு
ଶ

଴

,   𝐻|𝛁𝑰𝑰𝑃| = 2𝜂(𝐿௪)𝐿௪ 
(7) 

Through a variable transformation from the gap coordinate to shear stress to velocity gradient, 
𝑧 → 𝜏 → 𝐿, the flow in response to pressure gradient can be reduced to a simple correspondence 
through the wall shear rate, 𝐿௪. 

𝑞 = −2 න 𝐿𝑧𝑑𝑧

ு
ଶ

଴

= −
𝐻ଶ

2𝜏௪
ଶ

න 𝐿𝜏𝑑𝜏
ఛೢ

଴

= −
𝐻ଶ

2𝜏௪
ଶ

න 𝜂𝐿ଶ ൬𝜂 + 𝐿
𝑑𝜂

𝑑𝐿
൰ 𝑑𝐿

௅ೢ

଴

 

= −
𝐻ଶ

4
ቈ𝐿௪ −

1

𝜏௪
ଶ

න 𝜂ଶ𝐿ଶ𝑑𝐿
௅ೢ

଴

቉ 

(8) 

If the viscosity integral is made dimensionless, the connection between flowrate and wall shear 
rate, and indirectly pressure gradient is, perhaps, simpler. 

𝐼ሚ ≡
1

𝐿௪𝜏௪
ଶ

න 𝜂ଶ𝐿ଶ𝑑𝐿
௅ೢ

଴

=
1

𝜂௪
ଶ

න 𝜂(𝜉𝐿௪)ଶ𝜉ଶ𝑑𝜉
ଵ

଴

, 𝑞 = −
𝐻ଶ

4
𝐿௪[1 − 𝐼ሚ]  

(9) 

As a result, Reynolds’ lubrication modified for generalized Newtonian models for the special 
case of stationary walls and incompressible flow becomes as follows. 

𝛁𝑰𝑰 ∙ ቈ−
𝐻ଶ𝐿ௐ

4
ቆ1 −

1

𝜂௪
ଶ

න 𝜂(𝜉𝐿௪)ଶ𝜉ଶ𝑑𝜉
ଵ

଴

ቇ቉ = 0,   𝜂(𝐿௪)𝐿௪ =
𝐻

2
|𝛁𝑰𝑰𝑃| 

(10) 

For several Generalized Newtonian constitutive relations, e.g., power-law, Herschel-Buckley, 
and Carreau-Yasuda with the exponent p=3, the integral in (9) is available analytically.  For 
others, it can be numerically evaluated using Gaussian quadrature or other similar techniques. 

2.2 Two-dimensional Generalized Newtonian Lubrication Flow 

When the channel walls are moving, the flow is, in general, two-dimensional.  In addition to 
the pressure gradient driving force, the walls drag fluid in potentially different directions.  It is 
useful to define a second direction, 𝒇, perpendicular to the pressure gradient direction, 𝒆, 
defined in (6). 

 𝒆 ∙ 𝒇 = 0, 𝑳 ≡
𝜕𝒗𝑰𝑰

𝜕𝑧
= 𝐞Lୣ + 𝐟L୤,       𝐿௘ =

𝜕𝒆 ∙ 𝒗𝑰𝑰

𝜕𝑧
,    L୤ =

𝜕𝒇 ∙ 𝒗𝑰𝑰

𝜕𝑧
 

(11) 

The flow is not symmetric in the gap direction, but the momentum balance (5) still applies.  
Since there is no pressure gradient in the 𝒇 direction, the shear stress in that direction is constant 
across the lubrication channel gap and determines how the two velocity gradients, 𝐿௘ and 𝐿௙ are 
related.  The no-slip boundary condition at the bounding surfaces, shown here in integral form, 
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together with the stress balance complete the governing equations. 

𝒇 ∙ 𝝉𝒛,𝑰𝑰 = K = η൫𝐿௘ , 𝐿௙൯L୤,         𝐔 − 𝐕 = න 𝑳𝑑𝑧
ுೆ

ுಽ

 
(12) 

Like the one-dimensional flow situation, a variable transformation from the gap coordinate to 
shear stress to velocity gradient, 𝑧 → 𝜏 → 𝐿, converts the momentum balance and no-slip 
condition to functions of the surface velocity gradients. 

(𝑼 − 𝑽)|𝛁𝑰𝑰𝑃| = 𝐞 ൥𝜂൫𝐿௘ , 𝐿௙൯𝐿௘
ଶ ห

௅

௎
− න 𝜂𝐿௘𝑑𝐿

௅೐
ೆ

௅೐
ಽ

൩ + 𝐟K ൥𝐿௘(1 + ln 𝜂)|௅
௎ − න ln 𝜂 𝑑𝐿

௅೐
ೆ

௅೐
ಽ

൩ 
(13) 

𝒒 =
𝑼𝜂𝐿௘

௎ − 𝑽𝜂𝐿௘
௅

|𝛁𝑰𝑰𝑃|
=

1

|𝛁𝑰𝑰𝑃|ଶ
൝
𝐞

𝟐
൥𝜂ଶ𝐿௘

ଷ |௅
௎ − න 𝜂ଶ𝐿௘

ଶ 𝑑𝐿
௅೐

ೆ

௅೐
ಽ

൩ + 𝐟K ൥𝜂ଶ𝐿௘
ଶ |௅

௎ − න 𝜂𝐿௘𝑑𝐿
௅೐

ೆ

௅೐
ಽ

൩ൡ 
(14) 

The flow vector expression (14) captures the flowrate pressure drop relationship in the general, 
moving boundary situation, while the two components of the no-slip conditions (13) and 
momentum balance (12) provide governing equations for the quantities 𝐾, 𝐿௘

௎, and 𝐿௘
௅  that the 

flow vector depends on. 
 

3 NOT SO WIDE, THIN FLOW CHANNELS 

Often molds to be filled have obstacles in the flow path or stripes and discontinuous coatings 
may be applied to a substrate.  Applications like these feature flow passages that are not so wide 
with aspect ratios as low as unity.  Section 5 below shows two examples in Figures 5 and 6.  
The side walls in the narrow passages exert extra drag on the flow, causing lubrication 
calculations to underpredict the pressure difference for a given flowrate (or overpredict flowrate 
for a given pressure gradient).  For Newtonian liquids, the side wall effect is usually accessible 
analytically.  For example, the velocity field in a rectangular channel can be represented as an 
infinite series4. 

𝑢(𝑦, 𝑧) =
∆𝑝

𝐿

𝐻ଶ

8𝐿
ቐ1 − 4

𝑧ଶ

𝐻ଶ
− ෍

32(−1)௡ cosh(2𝑛 + 1)𝜋
𝑦
𝐻

 cos(2𝑛 + 1)𝜋
𝑧
𝐻

(2𝑛 + 1)ଷ𝜋ଷ cosh(2𝑛 + 1)𝜋
𝑊
2𝐻

ஶ

௡ୀ଴
ቑ 

(15) 

L is the channel length and W its width.  The effective local permeability across the channel, 
that is, the ratio of flow to pressure gradient scaled with viscosity, comes from the integrated 
velocity profile across the channel gap.  The local permeability in series form is as follows and 
is shown in Figure 3. 

𝑞(𝑦) = න 𝑢(𝑦, 𝑧)𝑑𝑧

ு
ଶ

ି
ு
ଶ

→  
𝑞(𝑦)

∇𝑝
𝜇 =

𝐻ଷ

12
቎1 −

3

2
෍

64 cosh(2𝑛 + 1)𝜋
𝑦
𝐻

 

(2𝑛 + 1)ସ𝜋ସ cosh(2𝑛 + 1)𝜋
𝑊
2𝐻

ஶ

௡ୀ଴
቏ 

(16) 
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Figure 3 – Comparison of local effective permeability from the series solution for Newtonian flow in rectangular 

channels of different aspect ratios from 1 to 10.  The model shown is an exponential function of the distance 
from the side wall.  The wall correction factor (y-axis) is relative to the permeability of an infinitely wide 

channel (no side walls). 

To a reasonable approximation, the side wall reduces the effective local permeability according 
to an exponential function of the distance from the side wall. 

𝑞(𝑦)

∇𝑝
𝜇 ≈

𝐻ଷ

12
[1 − 𝑒𝑥𝑝(−3.18𝑦)], 𝑜𝑟  

𝑞(𝑦)

∇𝑝
𝜇 ≈

𝐻௘௙௙
ଷ

12
,     𝐻௘௙௙(𝑦) = 𝐻[1 − 𝑒𝑥𝑝(−3.18𝑦)]

ଵ
ଷ   (17) 

For generalized Newtonian liquids, the velocity and thereby the local effective permeability 
for finite aspect ratio rectangular channels is a more complicated relationship.  In general, the 
local permeability is expected to depend on the wall shear stress as well as the distance from 
the side wall.  Figure 4 (top graphic) shows a computed 2.5-dimensional velocity profile for a 
Carreau-Yasuda liquid in a 4:1 aspect ratio rectangular channel at a down-channel pressure 
gradient of 10 kPa/mm.  The computation was repeated for a range of down-channel pressure 
gradient values from 0.1 – 100 kPa/mm.  The lower left graphic shows the variation in flow per 
unit width across the channel for this range.  The lower right graphic plots the effective liquid 
permeability as a function of distance from the side wall for each pressure gradient value.  Each 

curve closely approximates an exponential dependence, i.e., ௤(ௗ)

∇୮
∝ 1 − 𝑒𝑥𝑝(−𝛽𝑑), where the 

factor 𝛽 varies from about 3.2 for Newtonian behavior and decreases to about 2.0 in the steepest 
shear-thinning portion of the viscosity curve.  Conceivably, in lubrication calculations the 
exponential factor  could vary directly with the pressure gradient according to 2.5D 
calculations like those shown in Figure 4.  But more likely, an average value in this range would 
be an effective and reasonably accurate coarse-graining method for most lubrication flows of 
Generalized Newtonian liquids. 
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Figure 4: Computed velocity profile (top) from 2.5D FEM calculations for a 4:1 aspect ratio channel and a 

Carreau-Yasuda fluid (
ௗ௉

ௗ௭
= 10

௞௉௔

௠௠
, 𝜂଴=100 Pa-sec, n=0.25, 𝜆 = 1 sec., p=3, 𝜂ஶ=0.1 Pa-sec).  Also shown 

(lower left) is the variation in flow per unit width across the channel for many imposed pressure gradient values.  
The lower right graphic plots the effective liquid permeability as a function of distance from the side wall.  Each 

curve represents a particular pressure gradient value from the lower left figure. 

4 LUBRICATION FLOW WITH CAPILLARITY 

If the lubrication flow contains regions of different phases, such as coating liquid and 
displaced air, there will be an interface and interfacial forces acting on the flow.  Following 
Roberts et al.1, we utilize level-set methods to capture interface movement and compute 
interfacial forces.  These forces enter the lubrication momentum balance equations through a 
continuous surface force (CSF). 

𝑭஼ௌி = 𝜎𝜅𝛿(𝐹)𝐧୐ୗ  ≈  σκ∇୍୍H(𝐹) (18) 

The CSF is proportional to surface tension and interface curvature while being weighted with 
either the level-set delta function or gradient of the level-set Heaviside function, both of which 
are functions of the level-set distance function, F. The CSF is active only about the level-set 
interface, which is located at 𝐹 = 0.  Roberts et al.1 reported several calculation results using 
the Heaviside gradient form while we find the transient calculations to be more productive with 
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the delta function form.  This difference may be the result of using a smooth Heaviside function 
with a finite width interface zone that we found to be more numerically robust. 

For thin channels, the dominant interfacial curvature is expected to be that which points out 
of the lubrication plane.  That is, the surface tangent vector points generally out-of-plane while 
the curvature vector is in the lubrication plane.  The minor curvature component, the in-plane 
one, has its tangent in the lubrication plane and the curvature vector is out-of-plane. 

The out-of-plane curve is taken to be circular arc, intersecting with the upper and lower 
bounding surfaces at a prescribed contact angle. 

𝜅௭ =
2

𝐻
ൣ− cos൫𝜃௦௖௔,௎ + tanିଵ(𝑛 ∙ 𝛁𝑰𝑰𝐻௎)൯ + cos൫𝜃௦௖௔,௅ + tanିଵ(𝑛 ∙ 𝛁𝑰𝑰𝐻௅)൯൧ 

(19) 

This contact angle could be constant or a function of the flow according to a dynamic wetting 
correlation or theory.5 

The in-plane curvature, like Roberts et al.1 is computed by a separate curvature equation 
using the level-set field.  Numerically, the curvature field is susceptible to spurious wiggles, 
i.e., oscillating curvature with a wavelength roughly equal to the mesh size.  Techniques that 
aid productive curvature calculation include curvature diffusion, advection of the curvature 
equation, and modulation of the curvature field far from the liquid-gas interface. 

𝜆఑

𝜕𝜅ூூ

𝜕𝑡
+ 𝜆఑〈𝒗𝑰𝑰〉 ∙ 𝛁𝑰𝑰𝜅ூூ = 𝒟𝛁𝐈𝐈

𝟐κ୍୍ + 𝑀(𝐹)𝛁𝐈𝐈 ∙ 𝐧୐ୗ 
(20) 

Here 𝒟 is the curvature diffusion coefficient, 𝜆఑is an advection time constant, and 𝑀(𝐹) is the 
modulation function which tends toward zero away from the level-set interface.  

𝑀(𝐹) = 1 if |𝐹| < α,    𝑀(𝐹) = 0 if |𝐹| > 2α,    𝑀(𝐹) = 2 − sign(𝐹)
F

2α
 otherwise 

(21) 

Here  is the level-set length scale, i.e., the half-width of the level-set interface.  Curvature 
modulation helps avoid sharp fronts in the curvature field that dramatically slow computations, 
often by drastically reducing the achievable time step.  In addition, using an advection time 
constant equal to unity, i.e., full advection, enables time steps sometimes as large as 5 times 
that without curvature advection. 

5 CALCULATION RESULTS 

Two examples were used to test modified lubrication flow formulations in the fully 
coupled finite element code Goma.6 Shell element methods akin to that described by Roberts 
et al.1 was deployed.  In both examples, quadratic shell elements with a smoothed Heaviside 
level-set function were used to represent continuous physical properties across the width of 
the level-set interface.  Typically, the level-set length scale, i.e., the half-width of the interface 
zone, was roughly equal to the lubrication channel gap.  Figure 5 shows the Carreau-Yasuda 
liquid of Figure 2 flowing into a constant thickness mold and around an obstacle.  The 
curvature field (left) is advected and modulated and tends toward zero away from the level-set 
interface (blue line).  The inset shows how the lubrication gap is modified between the lower 
wall and cylindrical obstacle to account for the drag of the side walls in this channel.  The 
viscosity field (right) shows relatively high viscosity at the leading stagnation point on the 
obstacle and near the lower wall due to slow flow from drag there.  Interestingly, shear-
thinning liquids show a locally decreased shear rate and higher viscosity within the level-set 
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interface zone. 
The curvature field computations of Figure 5 were done with curvature advection, 

modulation, and a diffusion coefficient (~103 mm/sec2) that is large enough to suppress 
spurious wiggles.  The calculation protocol starts with a steady-state calculation of liquid only 
(i.e., no level-set interface) flowing through the domain.  First-order continuation in power-
law index is used to proceed from a Newtonian constitutive relation to the Generalized 
Newtonian model with shear-thinning parameters.  Then, a level-set interface is added, and a 
transient calculation proceeds with identical properties in both phases and zero interfacial 
tension for about ten timesteps.  Lastly, the transient calculation is restarted typically with gas 
phase properties (density and viscosity) about 1/10th that of the liquid phase and the interfacial 
tension set to its physical value.  Under-relaxation during the Newton’s method iterations was 
used on the first timestep to achieve a converged solution and timestep error is controlled 
using a variable timestep and an error tolerance of 0.05%. 

 
Figure 5: Calculation results of one half of a symmetric flow (10000 mm3/sec) into a rectangular mold of 5 

mm thickness with a cylindrical obstacle whose diameter is 8 mm.  The liquid is described by the Carreau-
Yasuda model parameters of Figure 2.  Both the curvature field (left) and the viscosity field (right) are shown 
with the level-set interface depicted as a thin blue line.  The inset shows the wall distance function (black) and 

effective lubrication gap (green) below the cylindrical obstacle. 

By contrast, the second example (Figure 6) features a Newtonian liquid flowing through a 
more complicated geometry.  Multiple, compact “cross”-shaped obstacles form a flow path 
for liquid entering from the bottom of the diagram.  The cross tips have a radius of 50 um, the 
same as the channel depth.  The aspect ratio of the flow passages between the obstacles 
approaches unity leading to significant drag from the side walls.  Since the liquid is 
Newtonian, the effective gap relation displayed in (17) was used to quantify the sidewall drag 
for this situation.  The finite element discretization, see magnified views in Figure 6, featured 
a paved mesh with element sizes in the 3-6 um range.  The contact angle of the liquid against 
the bounding surfaces was set to 90 degrees, so interfacial forces were minimal in this 
example calculation. 
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Figure 6: Short time and longer time snapshots of a liquid flowing into a 2.5 mm wide, 0.050 mm deep 
channel from the bottom at a constant 1.0 mm3/sec.  The coloration refers to viscosity level, so the liquid (water) 
appears red whereas displaced gas (air) is blue.  Two magnified views (top) show the discretization around the 
obstacle.  The right magnification adds 5 level-set field contours across the interface zone.  The level-set length 

scale is 0.0375 mm in this calculation. 

One consequence of decreased liquid permeability near the obstacles in the level-set 
calculation is that liquid is slow to replace gas at these boundaries.  The inset in Figure 6 
shows a thin layer of gas (blue) which is eventually replaced by liquid (red).  But since the 
level-set interface zone is wider than this layer, interpreting this layer as “gas” may be 
suspect.  In addition, the trailing edges of the cross-shaped obstacles often show small 
“bubbles” or “fingers” of gas phase that may persist.  Usually, finer discretization and more 
refinement near the trailing edges reduces their occurrence but that carries with it a 
computational cost.  Further calculations with smaller level-set length scales or a sharp 
interface and experimental flow visualization may clarify the interpretation. 

6 SUMMARY 

Modifications to Reynolds’ lubrication to accommodate shear-thinning rheology and low 
aspect ratio flow channels have been created and applied to two filling applications.  The multi-
phase lubrication techniques pioneered by Roberts et al. have been expanded to include 
modulation and advection of the curvature field in the continuous surface force term.  Both 
advancement areas expand the application space for reduced-order methods in the analysis, 
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design, and optimization of manufacturing flows via lubrication methods. 
Further developments beyond the present work in modifications beyond traditional 

Reynolds’ lubrication seem likely, particularly for manufacturing applications.  Lubrication 
capability for non-isothermal flows due to either imposed temperature differences or heat 
generated by the flow would be useful, especially for Generalized Newtonian liquids.  
Continued work on more time-efficient interface movement calculations for multiphase 
applications would also enable more rapid expansion into more complicated flow geometries 
and additional physical phenomena. 
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