
E�cient implementation of Galerkin meshfree methods for
large-scale problems with an emphasis on maximum entropy

approximants

Christian Peco, Daniel Millán, Adrian Rosolen and Marino Arroyo⇤

LaCàN, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain

Abstract

In Galerkin meshfree methods, because of a denser and unstructured connectivity, the creation
and assembly of sparse matrices is expensive. Additionally, the cost of computing basis func-
tions can be significant in problems requiring repetitive evaluations. We show that it is possible
to overcome these two bottlenecks resorting to simple and e↵ective algorithms. First, we create
and fill the matrix by coarse-graining the connectivity between quadrature points and nodes.
Second, we store only partial information about the basis functions, striking a balance between
storage and computation. We show the performance of these strategies in relevant problems.

Keywords: meshfree methods, local maximum entropy, sparse matrix e�cient assembly,
matrix structure creation, optimal memory storage, code optimization

1. Introduction

Meshfree methods have emerged in recent years as a viable alternative to finite elements in
a number of applications, see [1, 2, 3, 4, 5] for a detailed review. These methods are based on
basis functions that do not rely on a mesh. As a consequence, many of the requirements associ-
ated with the quality of the elements in traditional finite element method (FEM) are relaxed or
disappear, but this extra flexibility raises new challenges in the numerical implementation [6].
Meshfree methods also present several advantages such as basis functions with high-order con-
tinuity, robustness in dramatic grid deformations [7, 8, 9], and easier local adaptivity [10, 11].
Galerkin meshfree methods require a quadrature mesh to perform numerical integration, com-
monly requiring a higher number of quadrature points to accurately integrate the weak form
due to their nonpolynomial nature and nonelement-wise support [12, 13]. Additionally, most
of the meshfree methods present an awkward treatment of essential boundary conditions due to
nonsatisfaction of the Kronecker delta property [3, 14].

⇤Correspondence to: marino.arroyo@upc.edu

Preprint submitted to Computers and Structures October 10, 2014

Basis function

Full support
Effective support

Tol0

Figure 1: Full support of some meshfree basis functions, such as local maximum entropy approximants, covers the
convex hull of the computational domain. The e↵ective numerical support radius ra is determined by a cuto↵ basis
function value Tol0 (left). Representation of two-dimensional LME approximants basis functions (right). Notice
the noninterpolant character and the smoothness of the basis functions, and the fulfillment of a weak Kronecker-
delta at the boundary of the convex hull.

Since smoothed particle hydrodynamics [15], a variety of techniques have emerged, such
as reproducing kernel particle method [16], partition of unity finite element method [17], el-
ement free Galerkin [18] and the method of finite spheres [19, 20], to mention a few. We
resort in this work to the local maximum entropy (LME) approximation schemes, a meshfree
method inspired on information theory that generates nonnegative and smooth basis functions
(see [21, 22, 23, 24, 25] for a detailed description, properties and extensions). Because the
LME basis functions do not satisfy the Kronecker-delta property at nodes, these schemes are
referred to as approximants instead of interpolants. The capabilities of LME approximants
have been examined in a variety of computational mechanics applications, such as linear and
nonlinear elasticity [25, 26], plate [27] and thin-shell analysis [28, 29], convection-di↵usion
problems [30, 31], and phase-field models of biomembranes [32, 33] and fracture mechan-
ics [34, 35, 36].

Like other meshfree methods, LME approximants involve a dilation or locality parameter
that modulates their behavior and support. LME approximants show an exponential decay con-
trolled by the locality parameter, and far from the boundaries they look like Gaussian weighted
functions [37, 24]. Their e↵ective support is controlled by setting a cut o↵ or threshold value
(Tol0) below which the basis functions are taken numerically to be zero (see Fig. 1, Appendix
A). The proper choice of the locality parameter is problem dependent and not easy in general,
which has motivated a systematic studies for general meshfree methods [38] and for LME ap-
proximants [25] in particular. In LME approximations, the locality parameter is an aspect ratio

2

parameter �, which allows us to smoothly move from linear finite elements shape functions
(� > 4.0) to more spread out approximation schemes (e.g., � = 0.6), as illustrated in Fig. 2. In
general, broader functions lead to more accurate results for problems with smooth solutions at
the expense of higher computational cost and worse matrix conditioning [22, 28].

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

p
a

γ = [0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6]

Figure 2: Seamless transition from spread-out meshfree to linear finite elements basis functions.

In contrast to conventional FEM, where the structure of the matrix is inherited from the
mesh graph, stencils of meshfree schemes depend strongly on the aspect ratio parameter �.
In our experience, a noticeable run-time computational cost of meshfree methods is due to the
creation of the sparse matrix structure and the assembly process, which can be specially harmful
for iterative processes. These stages can be as expensive as the solver stage in two-dimensional
problems and exceed it in three-dimensional ones. In a typical implementation of the assembly
process in meshfree methods, the code loops over the quadrature points. The denser sparsity
pattern and the large number of Gauss points required for accurate integration can make these
methods unpractical for large-scale calculations. To overcome this issue, we propose here a set
of algorithms based on a loop over cells/elements, as commonly done in FEM. We illustrate
in this work how this simple approach reduces significantly the computational cost associated
with the matrix structure creation and the assembly process.

Additionally, a widespread practice (both in FEM and in meshfree methods) is to store in
memory the basis functions and their derivatives for repetitive calculations required in nonlinear
iterative solvers, incremental loading, or evolution in time. In FEM, this storage is insignificant
because the basis functions of the parent element are mapped to each physical element. Since
this is not the case in meshfree methods, the amount of memory and its access can become a
bottleneck and substantially reduce the code e�ciency, especially in large-scale problems. If
meshfree basis functions are not stored in memory but recomputed every time, the computa-
tional cost can also increase significantly. To alleviate this issue, we propose here a strategy
that is a trade-o↵ solution between memory storage and computational time. The technique,
based on a data structure that stores only partial information about the basis functions and an
algorithm to reconstruct them when needed, reduces considerably the memory usage at the ex-

3

pense of a minimum increment in the overall computational cost. We illustrate and exploit this
concept on LME approximants.

The paper is organized as follows. In Section 2 we review the basic technicalities for a
meshfree method particularized to LME approximants and the classical implementation to ap-
proximate partial di↵erential equations (PDEs). We then propose an algorithm to speed-up the
matrix assembly and an algorithm for the compressed memory storage of LME approximants
in Section 3. We extensively test our proposals with numerical examples in Section 4 and finish
with some concluding remarks in Section 5.

2. A standard meshfree scheme

Let X = {x1, x2, . . . , xN} ⇢ Rd, for d = 1, 2, 3, be an unstructured set of nodes used to
describe a domain ⌦, and pa(x) the meshfree basis function associated to the a-th node, for
a = 1, . . . ,N. A continuous field � can be approximated as

�(x) =
NX

a=1

pa(x)�a,

where �a stand for the nodal coe�cients. Here we adopt the LME approximants as mesh-
free basis functions in a Galerkin method to approximate a general PDE. They are nonnega-
tive, smooth, satisfy at least up to the first order consistency conditions and present a weak
Kronecker-delta property. We rely on a background mesh to define the quadrature points, typ-
ically through a Gauss-Legendre quadrature rule. Since this mesh is just required to place the
Gauss points, its requirements are less strict than in a mesh-based method. We use here meshes
made of triangles/tetrahedra in 2D/3D, which we easily obtain via the library QHULL [39].
The procedure needed to compute the system matrix in a Galerkin meshfree approach requires
mainly four steps: (i) neighborhood search, (ii) computation of the basis functions, (iii) creation
of the sparse matrix structure and (iv) Gauss point-wise matrix filling. The pseudocode shown
in Algorithm 1 summarizes these four steps. In the present work, we do not deal with solver
performance. In the following we briefly extend on the computational implications of every
step.

Algorithm 1 Pseudo-code for scheme based on a loop over quadrature points (see Section 2).
(i) Determine the neighborhood nodal index set NX

y

for each Gauss point.
(ii) Compute shape functions (array pa).

(iii) Construct sparse matrix structure (arrays ia and ja).
(iv) Fill sparse matrix (array an) with the quadrature point loop based algorithm.

The objective of step (i) is to compute the so-called neighbor lists, which can be interpreted
as the counterpart of the mesh connectivity in FEM where the neighbor lists are given by the

4

mesh itself. In a meshfree scheme this is made by specialized algorithms, i.e. neighbor searchers
which identify the relationship between the quadrature points and the nodes. We will refer to
the neighbor lists as primal and dual lists [28], which are complementary. In particular, a dual
list identifies the quadrature points that are influenced by a particular node i.e. the quadrature
points falling within the e↵ective support of a nodal basis function. Conversely, the primal list
contains the nodes that influence a particular quadrature point.

Formally, let Y = {y1, y2, . . . , yL} ⇢ ⌦ be a set of quadrature points. The dual list containing
the nearest points from Y associated with a node xa 2 X can be defined as follows

eNY
xa
= {k 2 {1, 2, .., L} | |yk � xa| < ra},

where ra is the e↵ective support radius of the shape function associated to the a-th node (which
is determined by a user defined cuto↵ value Tol0, see Fig. 1). In the same way, the primal list
containing the nodes from X associated with a particular quadrature point yk 2 Y is defined as

NX
yk
= {a 2 {1, 2, ..,N} | |yk � xa| < ra}.

The primal and dual lists are used afterwards in steps (ii), (iii) and (iv) to compute the basis
functions, identify the nonzero positions in the sparse matrix and perform the assembly. Both
lists can be obtained by simply invoking a neighbor searcher. The neighbor finding problem
is standard, and comes in two flavors, namely finding the k-first neighbors or finding neigh-
bors within a range. In our codes, we resort to the approximate nearest neighbor searching
library [40], whose computational cost scales as O(N log N), where N is the number of nodes.

In step (iii) the nonzero elements in the global matrix are identified using algorithms that
postprocess the neighbor lists. This information is critical to properly store the matrix in a sparse
scheme and perform the filling. There are many methods for storing sparse matrices (see, for
instance, [41] and [42]). We follow here the compressed sparse row (CSR) storage, which is a
proper choice for codes written in C/C++ due to its memory layout. In CSR, a matrix is given
in terms of three lists. The first list, ia, is an array of integers that stores the total number of
nonzeros up to each row. Its dimension is the number of rows plus one, the first position being
filled with a zero. The second and third lists are arrays of integers and doubles, ja and an, have
as dimension the number of nonzeros in the matrix, and store the column index position and
the associated matrix entry. We understand the sparse matrix structure creation as the collection
of algorithms required to obtain the lists ia and ja. An e�cient way to compute this structure
based on a loop over quadrature points is presented in Appendix C. The standard algorithm
loops over the primal lists of the Gauss points associated to each nodal dual list, such that the
nonzero entries of the sparse matrix are identified when two nodes appear together in at least
one primal list. As a result, the sparse structure construction becomes increasingly expensive as
the number of quadrature points and the support of the basis functions becomes larger.

In step (iv) the nonzero positions of the system sparse matrix (an) are filled in an operation
dependent on the PDE. Pursuing a rational memory access, standard Galerkin meshfree algo-
rithms rely on a loop over the Gauss points, each contributing with a local dense matrix. The

5

number of rows of this local matrix is equal to the cardinality of the primal list |NX
y

| = n times
the number of scalar fields in the problem. Again, the computing time of this step is directly
penalized by the increase of quadrature points and by the support size of the basis functions.
Furthermore, the local matrices have to be assembled into the global matrix. Since the global
matrix is sparse, a search is required to identify the global position to be filled. This concept is
illustrated in the upper part of Fig. 3.

Gauss point
dense matrix

Cell/Element
dense matrix

Global sparse matrix

Gauss point
neighborhood

Cell/element
neighborhood

Figure 3: Filling algorithm from neighbor lists to global sparse matrix. Nodal list of neighbors (black dots) can
be computed for an individual integration point (red X, top) or for a cell/element (white triangle, bottom). Dense
submatrices are generated from these neighborhoods and assembled into the global matrix. Cell/element algorithm
improves memory management since the resulting dense submatrix condenses information coming from several
integration points.

3. Meshfree optimization concepts

We present here two optimizations to improve the e�ciency when facing the bottlenecks
described in Section 1. First we describe in Section 3.1 a neighborhood coarsening algorithm
that considerably speed-up steps (iii) and (iv). Finally, a reduced storage strategy that mitigates
the memory requirements when storing the basis functions is detailed in Section 3.2.

3.1. Neighborhood coarsening algorithm
A simple idea to alleviate the computational cost of the global sparse matrix is to coarse-

grain the neighbor primal lists. The key point is to generate a list for each cell/element of a

6

defined coarsening mesh rather than one per Gauss point. The coarsening mesh provides us
with a structure to group the primal lists of the Gauss points contained in the cell/element.
Without loss of generality, a straightforward and natural choice for the coarsening mesh is
the quadrature mesh cells/elements needed in most Galerkin meshfree methods to perform the
numerical integration. In this way the complexity added by the increase of Gauss points due to
accuracy requirements is removed and the neighbor lists are generated disregarding the number
of integration points. We present next details of this procedure.

Once the coarsening mesh is set, we start with a neighbor search over the nodes defining the
mesh. This allows us to obtain nodal-based primal lists rather than primal lists for quadrature
points. To obtain the cell/element primal lists, the primal lists of its associated nodes are simply
merged. More specifically, we define

Nel =
[

a2Tel

NX
xa
,

where Tel is an index set containing the nodal indexes of the el-th cell/element (e.g the mesh
connectivity). Note that the Nel list is applicable to all of the integration points inside the
cell/element, regardless their number. This merging operation is negligible in terms of com-
putational time, and give us the possibility to work from now on with cell/element primal lists
rather than with integration point based lists. We illustrate this concept in Fig. 4. The exam-
ples shown in Section 4 use the quadrature mesh as coarsening mesh and follow the proposed
unifying criterium.

Scattered set of
points/nodes

Point/Node

Gauss point
Nodal range Æ
Ni nodal neighborhood

Integrated
neighbor list

ࢋࡺ ൌ 	 ራ ࢇ࢞ࡺ
ࢄ

ࢋࢣ∋ࢇ

Figure 4: Integrated neighborhood concept. The new cell/element neighborhood is described by the union of nodal
vertices lists of neighbors. The triangular elements given by the quadrature mesh are used here as background
cell/element generator.

7

Vertex merging is a proper strategy when the support size ra is large relative to the mesh size
ha, which is the usually the case in meshfree methods. Conceivably, it could be the case that the
merging of the vertices lists would lead to some loss of information. A node could be influenc-
ing an integration point inside a cell/element without influencing any of the vertices containing
it, e.g. in highly distorted triangles in 2D. If these unlikely events need to be absolutely ruled
out, it is always possible to construct the unified lists by merging the neighbor lists of the Gauss
points belonging to a cell/element. In our experience, however, this never happens when using
a quadrature mesh; the agreement in numerical integration benchmarks is perfect, and for this
reason we recommend the proposed vertex merging to create the cell/element lists.

The creation and filling algorithms can be now based on cell/element neighbor lists, which
greatly speeds-up the computations. The structure creation is simplified since only the nodes
and cells/elements are involved in the whole procedure. Now the nonzero positions are identi-
fied by looping over cell/element neighbor lists instead of looping over Gauss points neighbor
lists. The filling of the matrix benefits in two distinct ways. Firstly, the element-wise approach
leads to cell/element dense matrices. These local matrices are e�ciently filled since just a loop
over the neighbor list of the cell/element and a loop over the cell/element Gauss points are re-
quired. Secondly, only one dense cell/element matrix is assembled into the global matrix, hence
the memory access is improved, as illustrated in the lower part of Fig. 3.

As we show later in Section 4.1, this optimization maintains constant the computational
time associated with the matrix-pattern creation algorithm regardless the number of integration
points used. This fact significantly alleviates one of the main disadvantages of meshfree meth-
ods, namely the large number of quadrature points needed as compared to piecewise polynomial
approximants. Furthermore, the granularity of the element-level approach is better suited for
parallel computing, minimizing memory access and limiting data exchange. The pseudo-code
for the procedure is summarized in Algorithm 2.

Algorithm 2 Pseudo-code for scheme based on a loop over cells/elements (see Section 3).
(i) Compute adjacency lists for nodes NX

xa
and process cell/element lists Nel =S

a2Tel NX
xa

.
(ii) Compute shape functions (array pa).

(iii) Construct sparse matrix structure (arrays ia and ja).
(iv) Fill sparse matrix (array an) with the cell/element loop based algorithm.

3.2. Compressed meshfree basis functions storage
A standard practice in the numerical treatment of PDEs is to store in memory the basis

functions and their derivatives at each Gauss point. This strategy decreases considerably the
computational cost in problems involving nonlinear iterative solvers or evolution problems on
Lagrangian meshes. While this storage is insignificant in FEM, in meshfree methods the amount
of memory (as quantified later) and its access can become a bottleneck and substantially reduce

8

the code e�ciency. Here we propose a storage concept that is based on finding structures that
optimally synthesize the basis function information at each integration point, striking a trade-
o↵ between memory storage and computation time. We generate data structures that store only
partial information about the basis functions and an algorithm to reconstruct them when needed,
reducing considerably the memory usage at the expense of a marginal increment in the overall
computational cost.

For a general meshfree method, and considering the Galerkin approximation of a fourth-
order PDE, the full storage of the basis functions requires MFS = L · n̄ · [1 + d + d(d + 1)/2] =
L · n̄ ·

⇣
1 + 3

2d + 1
2d2
⌘

doubles. In this equation, L is the total number of quadrature points, n̄ is
the mean cardinality of the primal lists, 1 accounts for the basis functions themselves, d for their
gradients, and d(d + 1)/2 for the Hessian, which is a symmetric matrix. In a for fourth-order
PDE we typically have n̄ ⇡ 65 in 2D and n̄ ⇡ 380 in 3D. As a result, the memory requirements
rapidly become una↵ordable.

Focusing on LME approximants, we recall that the basis functions are obtained by means
of a nonlinear optimization problem at each evaluation point with d unknowns, where d is
the spatial dimension. This optimization problem yields the Lagrange multiplier associated
with first-order consistency conditions. Once the Lagrange multiplier is known, an explicit
expression for the basis functions, its gradient and its Hessian is explicit (see Appendix A).
Even if the nonlinear optimization problem is relatively easy to solve by Newton’s method, it
accounts for a significant part of the basis function evaluation time.

A straight-forward alternative to the full storage method would be to simply store the d
reals in the Lagrange multiplier at each quadrature point. Analyzing in detail the structure
of the explicit formulae for the basis functions and derivatives, it is easy to identify a set of
matrices and vectors whose size is independent on n̄, and some of which involve summations
over n̄. Thus, storing these arrays saves significant computation time at a limited memory cost.
As detailed in Appendix B, this simple observation suggests the optimal or compressed storage,
which only involves MOS = L ·

⇣
2 + 7

2d + 2d2 + 1
2d3
⌘
⇡ L · (2 + d) ·

⇣
1 + 3

2d + 1
2d2
⌘

doubles.
As the mean cardinality is in general much greater than the spatial dimension, i.e. n̄ � (2 + d),
from the ratio MFS /MOS = n̄/(2 + d) it is clear that the memory usage decreases significantly
when the compressed storage technique is used, as can be observed in Table 1.

In Section 4.2 we apply this strategy to a fourth-order PDE requiring the storage of the
values, gradients and Hessians of the LME basis functions. We quantify the memory usage
and computational time devoted to evaluate the basis functions for both the full and for the
optimized storage implementations.

4. Numerical examples

The performance of the optimizations presented in Section 3 are studied here in two boundary-
value problems. We compare the proposed implementation of Galerkin meshfree methods with
the standard implementation in terms of storage and computational time. Since we only change
the way operations are organized and information stored, the numerical solutions with both

9

Table 1: Quantification and comparison of memory usage between the methods of full and optimal or compressed
storage of local maximum-entropy basis functions and their derivatives. Here, n̄ is the mean cardinality of primal
lists, L is the number of Gauss points and d is the spatial dimension.

Full storage Optimal storage
Total memory usage MFS = L · n̄ ·

⇣
1 + 3

2d + 1
2d2
⌘

MOS = L ·
⇣
2 + 7

2d + 2d2 + 1
2d3
⌘

n̄ � (2 + d) MOS ⇡ L · (2 + d) ·
⇣
1 + 3

2d + 1
2d2
⌘

Comparison MFS /MOS ⇡ n̄/(2 + d) � 1

implementations are indistinguishable. We focus in the four steps presented in Section 2 and
leave aside the solver stage. As we specify in Section 1, in our experience the analized steps
can be comparable in computational time to the solver in 2D problems and exceed it in 3D. In
the first example the neighbor coarsening procedure from Section 3.1 is applied to a 2D heat
di↵usion and a 3D linear elasticity problems, whereas the compressed basis functions storage
detailed in Section 3.2 is exercised in a nonlinear fourth-order phase-field PDE. Both problems
use uniform grids that ensure a quite constant number of nodal neighbors for every integration
point and facilitate the comparison. In the first example we use the quadrature mesh and the
vertex merging approach to generate the unified primal lists, as proposed in Section 2. These
stages can be as expensive as the solver stage in two-dimensional problems and exceed it in
three-dimensional ones, particularly in problems with vectorial fields.

4.1. The neighborhood coarsening algorithm in 2D and 3D problems
We exercise first the neighborhood coarsening algorithm on a benchmark heat equation in

2D, which is a scalar problem. The sparse matrix structure creation and assembly using the
proposed neighborhood coarsening for scalar and vectorial problems is detailed in Appendix
C, along with a description of the data structures and a C/C++ pseudo-code.

The di↵usion boundary problem is defined as follows:

�T= f , in ⌦,
T= T0, on �D,

where T is the temperature field, ⌦ = (0, 1) ⇥ (0, 1) the domain, f is an arbitrary source of heat
and T0 is the prescribed temperature on the Dirichlet’s boundary �D. We consider T0 = 0 on
�D = @⌦ and assume a source f = 2y. The solution obtained using LME approximants with a
uniform grid of points of 100 ⇥ 100 is depicted in Fig. 5.

The entries of the sti↵ness matrix take the standard form

Kab =

Z

⌦

rpa · rpb d⌦,

10

Figure 5: 2D and 3D views of the solution for a heat equation with a source. We use LME approximants, a uniform
mesh of 100 ⇥ 100 nodes, � = 1.6 and 6 Gauss points per triangular cell/element.

where ⌦ cannot be reduced to a set of elements as in FEM. A quadrature rule is defined on a
background integration mesh over the whole domain (that may or may not coincide with the
coarsening mesh) as

Kab =

LX

k=1

rpa(yk) · rpb(yk) !k,

where !k stand for the Gauss points quadrature weights in physical space.
The performance of the algorithm based on looping over quadrature points depends on the

number of nodes used to discretize the domain, the number of Gauss points per quadrature
cell and the size of the support of the basis functions (linked to the aspect ratio parameter
�). In Fig. 6 we show a representative performance, reporting the computational time spent in
the main four stages of the algorithm described in Section 2, i.e. (i) neighborhood search, (ii)
shape functions, (iii) matrix structure creation and (iv) matrix structure filling. The plots show
computational time vs degrees of freedom (number of nodes) for di↵erent combinations of the
aspect ratio parameter � = 0.8, 1.6, 4.0 and three and twelve Gauss points per element. The
left-upper chart shows FEM-like LME approximants (� = 4.0) with three points per integration
element. In this case, the bottleneck in the shape functions calculation. In the other plots we can
see how increasing the support size (decreasing �) or/and increasing Gauss points per element
dramatically rises the cost of structure creation and structure filling in comparison with the
FEM-like shape functions. The upper charts in Fig. 7 illustrate the computing time growth for
di↵erent number of Gauss points, whereas the lower charts depict the growth when changing
the parameter �. The results of both figures highlight the need for speed-up techniques in steps
(iii) and (iv) when the size of the system increase for spread-out basis functions (� = 0.8, large
support) that require accurate numerical integration.

We proceed then to analyze the proposed cell/element scheme and review the performance
of critical stages (iii) and (iv). In the upper part of Fig. 8 the computational time vs number of

11

2601 10201 40401
0

0.5

1

1.5

2

2.5

DOF

s
e

c
o

n
d

s

2601 10201 40401
0

2

4

6

8

10

12

14

16

18

DOF

s
e

c
o

n
d

s

2601 10201 40401
0

10

20

30

40

50

60

DOF

s
e

c
o

n
d

s

2601 10201 40401
0

50

100

150

200

250

300

350

400

450

DOF

s
e

c
o

n
d

s

 γ = 4.0 Gauss points=3 γ = 1.6 Gauss points=3

 γ = 1.6 Gauss points=12 γ = 0.8 Gauss points=12

Neighbor search Shape functions Structure Filling

Figure 6: Computational time vs grid size for di↵erent values of Gauss points per cell and �. From left to right,
bars correspond to stages: (i) neighborhood search, (ii) shape functions, (iii) matrix structure creation and (iv)
matrix structure filling.

Gauss points is shown for � = 0.8, 1.6, 4.0. The juxtaposed bars in the figures compare the stan-
dard and the new implementations. We can see how the gain in performance grows as the sup-
port size increases, giving greater speed-ups as � decreases e.g. ten times faster for twelve Gauss
points and � = 0.8. Notice also that the matrix structure creation is completely insensitive in the
new implementation to the number of quadrature points per element, see Fig. 8. No speed-up
is observed when a small number of integration points is used. We show in the lower panels of
Fig. 8 the filling algorithm computational time vs number of Gauss points for � = 0.8, 1.6, 4.0.
We observe the same pattern of speed-ups when � decreases. Notice that although the speed-up
is considerable, the filling operations do depend on the number of quadrature points in the nee
algorithm, but far less critically than in the standard implementation. Nevertheless, the filling
time is greatly reduced with the proposed approach, particularly for large supports i.e. five times
smaller for � = 0.8 and twelve Gauss points.

Finally, the growth of computational time as a function of system size is presented in Fig. 9.
The standard implementation using twelve Gauss points is shown as reference. We conclude
that our proposal is significantly more e�cient than the algorithm based on looping over quadra-
ture points, and that the improvement increases as the number of quadrature points and support

12

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

s
e
c
o
n
d
s

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

s
e
c
o
n
d
s

Structure Filling

1
3
6
12

#Gauss

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

s
e
c
o
n
d
s

Filling

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

s
e
c
o
n
d
s

4.0
1.6
0.8

γ
Structure

Figure 7: Comparison between growth for matrix structure creation (left) and filling algorithms (right) with the
grid size for di↵erent values of Gauss points per cell (top, �=1.6) and for di↵erent values of parameter � (bottom,
Gauss points = 6).

size become larger.
We test now the neighborhood coarsening algorithm in a 3D linear elasticity problem, where

a cube of l = 1.0 m is stretched (we consider a Young’s modulus of E = 0.01 GPa and Poisson’s
ratio ⌫ = 0.2). We present the results for a 20 ⇥ 20 ⇥ 20 = 8000 node set with 4, 11 and 15
Gauss points per quadrature cell. We summarize in Fig. 10 the results. The time invested in
the creation of the structure, which is omitted in the figure, is small (4 s) and remains constant
regardless of the Gauss point number. We focus here in the filling time, which is dominant in
3D, and show that the proposed method is quite insensitive to the number of quadrature points,
while the computational time for standard implementation rapidly increases with the number of
quadrature points. The filling time for 15 quadrature points is 4 times longer with the standard
implementation. Solver time for this problem is around 100 s.

13

1 3 6 12
0

2

4

6

8

10

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

10

20

30

40

50

60

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

100

200

300

400

500

Gauss points

s
e

c
o

n
d

s

γ = 4.0 γ = 1.6 γ = 0.8

1 3 6 12
0

1

2

3

4

5

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

5

10

15

20

25

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

20

40

60

80

100

120

Gauss points

s
e

c
o

n
d

s

γ = 0.8γ = 4.0 γ = 1.6

Standard implementation (structure) Cell/element implementation (structure)

Standard implementation (filling) Cell/element implementation (filling)

Figure 8: Structure creation (top) and filling (bottom) computational time vs Gauss points for decreasing � (in-
creasing support). Standard and new implementation are shown (left and right bars, respectively). DOF = 40,401.

0E+0 1E+4 2E+4 3E+4 4E+4
0

50

100

150

200

DOF

s
e
c
o
n
d
s

Structure

0E+0 1E+4 2E+4 3E+4 4E+4
0

50

100

150

200

DOF

s
e
c
o
n
d
s

Filling

1
3
6
12
12s

#Gauss

Figure 9: Growth of the computational time as a function of the size of the system for the matrix structure creation
(left) and filling (right), using the new implementation di↵erent numbers of Gauss points per cell and � = 0.8. For
comparison purposes, the standard implementation using 12 Gauss points (legend 12s) is presented.

4.2. The compressed meshfree basis functions storage applied to a phase-field fracture model
We present here the results of the proposed memory storage strategy for the LME approx-

imants. We compare the full storage and optimized schemes in a fourth-order PDE problem

14

4 11 15
0

100

200

300

400

500

600

Gauss points

s
e

c
o

n
d

s

Cell/element implementation (filling)

Standard implementation (filling)

Figure 10: Deformed configuration for 3D linear elasticity benchmark (left). Computational time for the filling
algorithm using the new and the standard implementation for di↵erent numbers of Gauss points per cell, � = 0.8
and 24, 000 degrees of freedom.

requiring the values, gradients and Hessians of the basis functions. In a variational model of
fracture, the phase-field PDE results from the following functional

Z

�

Gc d� =
Z

⌦

Gc

"
(1 � �)2

4l0
+

l0

2
|r�|2 +

l3
0

4
��2
#

d⌦,

where Gc is the critical fracture energy density, � the phase-field, and l0 the parameter control-
ling the width of the approximation of the crack. We illustrate a typical solution in Fig. 11.
More details about this particular model can be found in [43].

We focus on the amount of doubles that need to be stored when using a standard and the op-
timized scheme, and also on the impact on computational time of the structure filling routine for
the global matrix. The latter requires retrieving the stored basis functions in the usual approach,
and partially recomputing them in the optimized storage approach. The structure creation step
is completely independent on evaluation/retrieval of the basis functions, and for this reason we
do not report it here. As can be observed in the left panel of Fig. 12, the optimized storage
strategy decreases the memory requirements by an order of magnitude; the ratio of memory
requirements is about 20. For this two-dimensional problem we use � = 1, leading to a mean
value of 72 neighbors per integration point. Here we use six Gauss points by element.

We analyze now the computational time invested in the filling of the global matrix. We can
observe in the right panel of Fig. 12 that the memory optimized storage is marginally slower
than the standard routine. The extra operations to retrieve the basis functions and its derivatives,
see Appendix A, is partially compensated by a more e�cient access to the memory, resulting
in running time increments of about 10%.

15

2l0=4h

Phase-field φ φ = 1 healthy
φ = 0 damaged

Figure 11: Fourth-order phase-field solution for a crack. Phase-field values range from 1 to 0 signaling the pro-
gressive damaging of the material (left). The ratio between the crack width parameter l0 and the nodal spacing h is
2 (right).

10 3 10 4 10 5 10 6
10 5

10 6

10 7

10 8

10 9

10 10

DOF

#d
ou

bl
e

1

full storage
optimized

1

10 3 10 4 10 5 10 6
10 0

10 1

10 2

10 3

DOF

se
co

nd
s

full storage
optimized

1

1

Figure 12: Comparison between the full storage and optimized implementations. The plots show the number of
doubles stored in the global matrix vs the number of degrees of freedom (left) and the computational time invested
in the filling and assembly of the global matrix vs the number of degrees of freedom (right).

5. Conclusions

We have presented two optimization procedures to mitigate two fundamental bottlenecks
in Galerkin meshfree methods: matrix assembly and basis functions storage. We have shown
how the sparse structure creation and filling of the system matrix become critical in a mesh-
free context when either the support size of the basis functions or the number of integration
points increases. We have introduced a simple coarse-graining procedure for matrix structure
creation and filling, where we change from an integration point perspective to one based on
cells/elements. As a result of this optimization, the dependence of the computational time on

16

the number of integration points is completely severed in the sparse structure creation and dra-
matically decreased in the matrix assembly. We tested the new implementation on a 2D heat
di↵usion PDE and 3D linear elasticity problem, speeding-up ten times the structure creation
and five times the filling in the case of twelve(2D)/fifteen(3D) Gauss points and � = 0.8. Addi-
tionally, a compressed memory storage for LME approximants has been introduced to alleviate
memory requirements. We have shown how this methodology can recover with minimal com-
putational overhead the basis functions, gradients and Hessians that are repeatedly required in
large-scale nonlinear or evolution problems, hence reducing drastically the amount of memory
by 20�fold for a scalar fourth-order PDE in 2D.

Further research in Galerkin meshfree methods should focus on tridimensional problems
and the study of proper parallelization algorithms for supercomputing. We have successfully
parallelized the presented techniques using state-of-the-art scientific codes such as PETSc (portable,
extensible toolkit for scientific computation library, [44]) and ParMetis [45] for reordering and
partitioning. Our current experience on a supercomputing facility further highlights the im-
portance of optimizations such as those presented here in large-scale vectorial problems in 3D.
Models showing an intrinsic high computational cost such as the phase-field approaches can par-
ticularly benefit from this concept due to the easy parallelization of the algorithms presented.
The approximation of phase-field models with LME in biomembrane dynamics [32, 33] and
fracture mechanics [35, 36] are successful examples of these optimization procedures.

Acknowledgments

We acknowledge the support of the European Research Council under the European Commu-
nity’s 7th Framework Programme (FP7/2007-2013)/ERC grant agreement nr 240487, and of
the Ministerio de Ciencia e Innovación (DPI2011-26589). CP acknowledges FPI-UPC Grant
and FPU Ph. D. Grant (Ministry of Science and Innovation, Spain).

Appendix A. Optimal storage of local maximum-entropy approximants

We review here the calculation of local maximum-entropy (LME) basis functions and their
derivatives. We represent spatial gradients of scalar functions by r, and we denote by D f (x) the
matrix of partial derivatives for vector-valued functions. The subindexes a and b refer to nodes.
Summation is not implied for repeated node indices (see [22, 25, 28] for further explanation).

Let X be a set of N scattered nodes X = {x1, x2, . . . , xN} ⇢ Rd, where d = 1, 2, 3 is the spatial
dimension, and their associate set of locality parameters {�1, �2, . . . , �N} ⇢ R. Given a point x,
recall that the primal listNX

x

contains the indices of the nodes a↵ecting x. The evaluation of the
basis function corresponding to the nodal point a is computed as

pa(x) =
exp[��a|x � xa|2 + �⇤ · (x � xa)]

Z(x)
, (A.1)

17

where Z(x) is a partition function

Z(x) =
X

a2NX
x

exp[��a|x � xa|2 + �⇤ · (x � xa)],

and the Lagrange multiplier �⇤ is the minimizer of the cost function ln Z(x, �) [22], that is

�⇤(x) = arg min
�2Rd

ln Z(x, �).

The first spatial derivatives of the basis functions (gradient) are computed as [22, 25]

rpa(x) = pa

h
r� � Ma(x � xa)

i
2 Rd, (A.2)

where

r�(x) = 2
X

b2NX
x

�b pb(x� xb) 2 Rd, Ma = 2�aI�D� 2 Rd⇥d, D�(x) =
⇣
J� � I

⌘
J

�1 2 Rd⇥d,

J�(x) = 2
X

b2NX
x

�b pb (x� xb)⌦ (x� xb) 2 Rd⇥d, and J(x) =
X

b2NX
x

pb(x� xb)⌦ (x� xb) 2 Rd⇥d.

The second spatial derivatives of the basis functions (Hessian matrix) can be written as [28]

Hpa(x) = pa

h
r� � Ma(x � xa)

i
⌦
h
r� � Ma(x � xa)

i

+ pa

h
r� ⌦ r� + r� ⌦ ja + ja ⌦ r� +

⇣
r� · ja

⌘
I

i

+ pa

h
2(�̄ � �a)I � Q � ja · T

i
2 Rd⇥d,

(A.3)

where

ja = J

�1(x � xa) 2 Rd, Q(x) =
X

b2NX
x

pb Mb(x � xb) ⌦ Mb(x � xb) 2 Rd⇥d,

�̄(x) =
X

b2NX
x

�b pb 2 R, and T(x) =
X

b2NX
x

pb(x � xb) ⌦ Mb(x � xb) ⌦ Mb(x � xb) 2 Rd⇥d⇥d.

Appendix B. Quantification of memory usage

We quantify here the memory usage for two di↵erent strategies to store local maximum-
entropy basis functions and their derivatives: the full storage and the optimal or compressed
storage methods.

The basis functions are usually computed and stored in memory for a given a set of L
quadrature points {y1, y2, . . . , yL} ⇢ Rd and the associated set of primal lists {NX

y1
,NX

y2
, . . . ,NX

yL
}

(see Section 2). By defining as nk = |NX
yk
| the cardinality corresponding to the primal list of the

18

Table B.2: Quantification of memory usage for two methods that store local maximum-entropy basis functions and
their derivatives. The optimal or compressed storage (OS) technique needs approximately L·(2+d)·

⇣
1 + 3

2 d + 1
2 d2
⌘

doubles, while the full storage (FS) method demands L · n̄ ·
⇣
1 + 3

2 d + 1
2 d2
⌘

doubles, where L is the number of
quadrature points, d the spatial dimension, and n̄ � (2 + d) the mean cardinality of the primal lists. The ratio
MFS /MOS shows that memory usage decreases significantly when the compressed storage technique is used.

Full storage Optimal storage
Variable Memory usage Variable Memory usage

Basis functions pa L · n̄ Z(x) L
�(x) L · d

First spatial derivatives rpa L · n̄ · d r�(x) L · d
D�(x) L · d · (d + 1)/2

Second spatial derivatives

Hpa L · n̄ · d · (d + 1)/2 �̄(x) L
J(x) L · d · (d + 1)/2
Q(x) L · d · (d + 1)/2
T(x) L · d · d · (d + 1)/2

Total memory usage MFS = L · n̄ ·
⇣
1 + 3

2d + 1
2d2
⌘

MOS = L ·
⇣
2 + 7

2d + 2d2 + 1
2d3
⌘

n̄ � (2 + d) MOS ⇡ L · (2 + d) ·
⇣
1 + 3

2d + 1
2d2
⌘

Comparison MFS /MOS ⇡ n̄/(2 + d) � 1

quadrature point yk, we can construct the set of cardinalities {n1, n2, . . . , nL} ⇢ R. To simplify
the calculations, we define the mean cardinality as n̄ = (

PL
k=1 nk)/L.

The full storage (FS) method demands a massive usage of memory because basis func-
tions and first and second derivatives associated to all the nodal points, and evaluated at all
the quadrature points, need to be stored in memory. The calculation of memory usage is
straightforward from the analysis of Eqs. A.1, A.2 and A.3 (see Table B.2 for a summary):
MFS = L · n̄ · (1 + d + d(d + 1)/2) = L · n̄ ·

⇣
1 + 3

2d + 1
2d2
⌘

doubles, where here and elsewhere
we exploit the symmetry of matrices (here the Hessian) to reduce storage. On the other hand,
the optimal or compressed storage (OS) method only requires the storage of some specific vari-
ables associated to the quadrature points. We quantify the memory usage of this method in
Table B.2: MOS = L ·

⇣
2 + 7

2d + 2d2 + 1
2d3
⌘
⇡ L · (2+ d) ·

⇣
1 + 3

2d + 1
2d2
⌘

doubles. As the mean
cardinality is regularly much greater than the spatial dimension, i.e., n̄ � (2+ d), from the ratio
MFS /MOS = n̄/(2 + d) we can conclude that the memory usage decreases significantly when
the compressed storage technique is used.

19

Appendix C. Data structure and specialized algorithms

We detail here the data structures and algorithms proposed to handle more e�ciently sparse
matrices in the context of meshfree methods. The data structures are specifically designed
to store the neighborhood index sets for particular “entities” (elements, nodes, or quadrature
points). The algorithms described are responsible for the creation of the sparse matrix structure
and the assembly process.

Appendix C.1. Data structure to store neighbor lists
The data structure to store neighbor lists is inspired in the compressed sparse row storage

format (see Section 2) and consists of two arrays, one indicating the number of neighboring
points to an entity (pointer array), and the other containing the index or identification number
of each one of these points (index array). Depending on the kind of assembly process, we need
to construct at least two of the following four neighborhood index sets:

• Primal lists: set of neighboring nodes to each quadrature point. These lists, stored in
the arrays is n and js n, are required for the assembly process based on a loop over the
quadrature points (see Section 2).

• Dual lists: set of the neighboring quadrature points to each nodal point (see Section 2 for
details). These lists, stored in the arrays in s and jn s, are dual to the primal lists.

• Lists of the neighboring nodal points to each cell/element, stored in the arrays ie n and
je n. These sets, defined in Section 3.1, are needed for the assembly process based on a
loop over the cell/elements.

• Lists of the neighboring cell/elements to each nodal point (arrays in e and jn e). These
lists are dual to those contained in the set of arrays ie n and je n.

We use here the primal lists to explain how the information of the neighborhood index
sets is stored in the arrays pointer array and index array, which in this work are respectively
referred as is n and js n. Given a set of L quadrature points {y1, y2, . . . , yL} ⇢ Rd and the
associated set of primal lists {NX

y1
,NX

y2
, . . . ,NX

yL
}, where d is the spatial dimension, NX

yk
= {a 2

{1, 2, ..,N} | pa(yk) > Tol0} the primal list for the quadrature point yk, N the total number of
nodes, Tol0 a numerical tolerance, and pa(yk) the evaluation at the point yk of the basis function
corresponding to the node a, the information stored in the arrays is the following:

• is n: the component p + 1 of this array is defined as is n(p + 1) =
Pp

k=1 |NX
yk
|. In other

words, the element (or position) p + 1 of the array contains the summation of the cardi-
nalities of the primal lists associated with the first p quadrature points. Note that the first
component is always zero and the length of the array is dim(is n) = L + 1.

20

• js n: this array, which stores consecutively in memory all the primal lists, is defined as
js n = (NX

y1
,NX

y2
, . . . ,NX

yL
). The length of the array is dim(js n) =

PL
k=1 |NX

yk
|, where the

cardinality can be di↵erent for each quadrature point. Note that the order of the quadrature
points is important and, in general, dim(js n) ⌧ N · L.

Appendix C.2. Algorithms for matrix structure creation and assembly process
The algorithms implemented to create the sparse matrix structure and the assembly process

are presented here in a C/C++ pseudo-code (declarations are left out for the sake of clarity).
The three routines detailed in the subsequent sections are:

• CreateElementBasicStructure1D(): this algorithm creates the arrays ia1 and ja1 of the
sparse matrix structure for the case in which the physical field is scalar. The neighbor
lists is n and js n are used in the method based on a loop over the quadrature points, and
the lists ie n, je n in the cell/element scheme.

• CreateStructureND(): extension of the previous algorithm to the n-dimensional case, i.e.,
when the physical field is vectorial. The arrays created are denoted by ia and ja.

• FillStructureND(): algorithm to fill the array an by executing the operations implemented
in the pointer function ⇤p f unction. The arrays ia and ja are needed in the assembly
process to loop over the rows and columns of the sparse matrix.

Appendix C.2.1. CreateElementBasicStructure1D()

/* 1. Method based on a loop over the quadrature points */

// Input data:

// - is n and js n: lists of the neighboring nodes to the quadrature points

// - in s and jn s: lists of the neighboring quadrature points to the nodal points

// Creation of list ia1 for the case in which the physical field is scalar

iwa=new int[nPts]; // nPts: number of nodal points

for (i=0;i<nPts;i++) iwa[i]=0; // auxiliary arrays

sumrow=0; l ia1=nPts+1; ia1=new int[nPts+1]; ia1[0]=0; // auxiliary arrays

// loop over matrix rows

for (i=0;i<nPts;i++){
// loop over the neighboring quadrature points to a nodal point

for (j=in s[i];j<in s[i+1];j++){
// loop over the neighboring nodes to a quadrature point

for (k=is n[jn s[j]];k<is n[jn s[j]+1];k++) iwa[js n[k]]=1;

}
// loop over all the nodes

for (kk=0;kk<nPts;kk++){ sumrow+=iwa[kk]; iwa[kk]=0; }

21

ia1[i+1]=ia1[i]+sumrow;

sumrow = 0;

}

// Creation of list ja1 for the case in which the physical field is scalar

l ja1=ia1[nPts];

ja1=new int[ia1[nPts]];

std::set<int> row list;

std::set<int>::const iterator

// loop over matrix rows

for (i=0;i<nPts;i++){
// loop over the neighboring quadrature points to a nodal point

for (j=in s[i];j<in s[i+1];j++){
// loop over the neighboring nodes to a quadrature point

for (k=is n[jn s[j]];k<is n[jn s[j]+1];k++) row list.insert(js n[k]);

}
sit (row list.begin()),

send(row list.end());

for (kk=0;sit!=send;++sit,kk++) ja1[ia1[i]+kk]=*sit;

row list.clear();

}

/* 2. Method based on a loop over cell/elements */

// Input data:

// - ie n and je n: lists of the neighboring nodal points to the elements

// - in s and jn s: lists of the neighboring quadrature points to the nodal points

// Creation of dual lists in e, jn e

in e=new int[nPts+1];

jn e=new int[ie n[nElem]];

for (i=0;i<nPts+1;i++) in s[i]=0;

for (i=0;i<nElem;i++) for (j=ie n[i];j<ie n[i+1];j++) in e[je n[j]+1]+=1;

for (i=0;i<nPts;i++) in e[i+1]+=in e[i];

count=new int[nPts];

for (i=0;i<nPts;i++) count[i]=0;

// loop over elements

for (i=0;i<nElem;i++) {
// loop over the neighboring nodes to an element

for (j=ie n[i];j<ie n[i+1];j++){
jn e[in s[je n[j]]+count[je n[j]]]=i;

22

count[je n[j]]+=1;

}
}

// Creation of list ia1 for the case in which the physical field is scalar

iwa=new int[nPts];

for (i=0;i<nPts;i++) iwa[i]=0;

sumrow=0;

l ia1=nPts+1; ia1=new int[nPts+1]; ia1[0]=0;

// loop over the rows

for (i=0;i<nPts;i++){
// loop over the neighboring elements to a node

for (j=in e[i];j<in e[i+1];j++){
pos=ie n[jn e[j]];

for (k=pos;k<ie n[jn e[j]+1];k++) iwa[je n[k]]=1;

}
for (kk=0;kk<nPts;kk++){

sumrow+=iwa[kk];

iwa[kk]=0;

}
ia1[i+1]=ia1[i]+sumrow;

}

// Creation of list ja1 for the case in which the physical field is scalar

l ja1=ia1[nPts];

ja1=new int[ia1[nPts]];

std::set<int> row list;

std::set<int>::const iterator

// loop over the rows

for (i=0;i<nPts;i++){
// loop over the neighboring elements to a node

for (j=in e[i];j<in e[i+1];j++){
pos=ie n[jn e[j]];

for (k=pos;k<ie n[jn e[j]+1];k++) row list.insert(je n[k]);

}
sit (row list.begin()),

send(row list.end());

for (kk=0;sit!=send;++sit,kk++) ja1[ia1[i]+kk]=*sit;

row list.clear();

}

23

Appendix C.2.2. CreateStructureND()

l_ia=(l_ia1-1)*nDim+1;

ia=new int[l_ia];

l_ja=l_ja1*nDim*nDim;

ja=new int[l_ja];

an=new double[l_ja]; // matrix array

// Creation of ia for the case in which the physical field is vectorial

ia[0]=0;

for (i=0;i<l_ia1-1;i++){
size=ia1[i+1]-ia1[i];

for (j=0;j<nDim;j++) ia[nDim*i+1+j]=ia[nDim*i]+(j+1)*(size*nDim);

}

// Creation of ja for the case in which the physical field is vectorial

for (i=0;i<l_ia1-1;i++){
size=ia1[i+1]-ia1[i];

for (j=0;j<size;j++){
siseJ=nDim*ja1[ia1[i]+j];

for (k=0;k<nDim;k++){
for (kk=0;kk<nDim;kk++) ja[ia[nDim*i+k]+(nDim*j+kk)]=siseJ+kk;

}
}

}

Appendix C.2.3. FillStructureND()

/* 1. Method based on a loop over the quadrature points */

M=new double[nDim*nNNMax*nDim*nNNMax]; // quadrature point local matrix

for (k=0;k<sPts;k++){ // loop over quadrature points (sPts is the number of Gauss points)

size=is_n[k+1]-is_n[k];

for (i=0;i<nDim*nNNMax*nDim*nNNMax;i++) M[i]=0.0;

for (i=0;i<size;i++){ // loop over neighbors

for (j=0;j<size;j++){ // loop over neighbors

for (ii=0;ii<nDim*nDim;ii++) A[ii]=0.0;

(*pfunction)(A,parameters,shape_functions); // operation --> get matrix A

// fill local matrix M

for (ii=0;ii<nDim;ii++)

for (jj=0;jj<nDim;jj++)

M[(nDim*i+ii)*(size*nDim)+(nDim*j)+jj]=A[ii*nDim+jj];

}

24

}
}

// fill global sparse matrix an with quadrature point contribution

rows=nDim*size;

for (i=0;i<rows;i++){
if (symmetric) j_ini=i; // symmetric

else j_ini=0;

inc_i=i%nDim;

base_row=(int)(i/nDim); // floor row

genrow=js_n[is_n[k]+base_row]*nDim+inc_i;

for (j=j_ini;j<rows;j++){
nc_j=j%nDim;

base_col=(int)(j/nDim); // floor row

gencol=js_n[is_n[k]+base_col]*nDim+inc_j;

for (kk=ia[genrow];kk<ia[genrow+1];kk++){
if (ja[kk]==gencol){

an[kk]+=M[i*rows+j];

break;

}
}

}
}

/* 2. Method based on a loop over cell/elements */

M=new double[nDim*nNNMax*nDim*nNNMax]; // cell/element local matrix

for (k=0;k<nElem;k++){ // loop over elements

size=ie_n[k+1]-ie_n[k];

for (i=0;i<nDim*nNNMax*nDim*nNNMax;i++) M[i]=0.0;

for (i=0;i<size;i++){ // loop over neighbors

for (j=0;j<size;j++){ // loop over neighbors

for (ii=0;ii<nDim*nDim;ii++) A[ii]=0.0;

(*pfunction)(A,parameters,shape_functions); // operation --> get matrix A

// fill local matrix

for (ii=0;ii<nDim;ii++)

for (jj=0;jj<nDim;jj++)

M[(nDim*i+ii)*(size*nDim)+(nDim*j)+jj]=A[ii*nDim+jj];

}
}

25

}

// fill global sparse matrix an with quadrature point contribution

rows=nDim*size;

for (i=0;i<rows;i++){
if (symmetric) j_ini=i; // symmetric

else j_ini=0;

inc_i=i%nDim;

base_row=(int)(i/nDim); // floor row

genrow=je_n[ie_n[k]+base_row]*nDim+inc_i;

for (j=j_ini;j<rows;j++){
nc_j=j%nDim;

base_col=(int)(j/nDim); // floor row

gencol=je_n[ie_n[k]+base_col]*nDim+inc_j;

for (kk=ia[genrow];kk<ia[genrow+1];kk++){
if (ja[kk]==gencol){

an[kk]+=M[i*rows+j];

break;

}
}

}
}

References

1. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.. Meshless methods:
An overview and recent developments. Computer Methods in Applied Mechanics and
Engineering 1996;139(1):3–47.

2. Li, S., Liu, W.K.. Meshfree and particle methods and their applications. Applied Me-
chanics Reviews 2002;55(1):1–34.

3. Fries, T., Matthies, H.. Classification and overview of meshfree methods. Tech. Rep.; In-
stitute of Scientific Computing, Technical University Braunschweig, Germany; July 2004.

4. Huerta, A., Belytschko, T., Fernández-Méndez, S., Rabczuk, T.. Meshfree Meth-
ods; vol. 1 of Encyclopedia of Computational Mechanics. E. Stein and R. de Borst and
T.J.R. Hughes (eds.); chap. 10. John Wiley & Sons, Ltd.; 2004, p. 279–309.

5. Fasshauer, G.E.. Meshfree Methods; chap. 2. Handbook of Theoretical and Computa-
tional Nanotechnology. M. Rieth and W. Schommers (eds.). American Scientific Publish-
ers; 2006, p. 33–97.

26

6. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.. Meshless methods: A review
and computer implementation aspects. Mathematics and Computers in Simulation 2008;
79(3):763–813.

7. Chen, J.S., Pan, C., Wu, C.T., Liu, W.K.. Reproducing kernel particle methods for large
deformation analysis of nonlinear structures. Computer Methods in Applied Mechanics
and Engineering 1996;139:195–227.

8. Chen, J.S., Pan, C., Rogue, C.M.O.L., Wang, H.P.. A lagrangian reproducing kernel
particle method for metal forming analysis. Computational Mechanics 1998;22:289–307.

9. Li, B., Habbal, F., Ortiz, M.. Optimal transportation meshfree approximation schemes
for fluid and plastic flows. International Journal for Numerical Methods in Engineering
2010;83(12):1541–1579.

10. Combe, U.H., Korn, C.. An adaptive approach with the element-free-galerkin method.
Computer Methods in Applied Mechanics and Engineering 1998;162:203–222.

11. Duarte, C.A., Oden, J.T.. An h–p adaptive method using clouds. Computer Methods in
Applied Mechanics and Engineering 1996;139:237–262.

12. Dolbow, J., Belytschko, T.. Numerical integration of the galerkin weak form in meshfree
methods. Computational Mechanics 1999;23:219–230.

13. Babuška, I., Banerjee, U., Osborn, J.E., Li, Q.. Quadrature for meshless methods.
International Journal for Numerical Methods in Engineering 2008;76:1434–1470.

14. Fernández-Méndez, S., Huerta, A.. Imposing essential boundary conditions in mesh-
free methods. Computer Methods in Applied Mechanics and Engineering 2004;193(12–
14):1257–1275.

15. Monaghan, J.. An introduction to SPH. Computer Physics Communications 1988;48:89–
96.

16. Liu, W., Jun, S., Zhang, Y.. Reproducing kernel particle methods. International Journal
for Numerical Methods in Fluids 1995;20:1081–1106.

17. Melenk, J.M., Babuška, I.. The partition of unity finite element method : Basic theory
and applications. Computer Methods in Applied Mechanics and Engineering 1996;139(1–
4):289–314.

18. Belytschko, T., Lu, Y.Y., Gu, L.. Element free Galerkin methods. International Journal
for Numerical Methods in Engineering 1994;37:229–256.

27

19. De, S., Bathe, K.J.. The method of finite spheres. Computational Mechanics 2000;
25:329–345.

20. Hong, J.W., Bathe, K.J.. Coupling and enrichment schemes for finite element and finite
sphere discretizations. Computers and Structures 2005;83:1386–1395.

21. Sukumar, N.. Construction of polygonal interpolants: a maximum entropy approach.
International Journal for Numerical Methods in Engineering 2004;61(12):2159–2181.

22. Arroyo, M., Ortiz, M.. Local maximum-entropy approximation schemes: a seamless
bridge between finite elements and meshfree methods. International Journal for Numeri-
cal Methods in Engineering 2006;65(13):2167–2202.

23. Sukumar, N., Malsch, E.A.. Recent advances in the construction of polygonal finite el-
ement interpolants. Archives of Computational Methods in Engineering 2006;13(1):129–
163.

24. Sukumar, N., Wright, R.W.. Overview and construction of meshfree basis functions:
From moving least squares to entropy approximants. International Journal for Numerical
Methods in Engineering 2007;70(2):181–205.

25. Rosolen, A., Millán, D., Arroyo, M.. On the optimum support size in meshfree methods:
a variational adaptivity approach with maximum entropy approximants. International
Journal for Numerical Methods in Engineering 2010;82(7):868–895.

26. Ullah, Z., Coombs, W.M., Augarde, C.E.. An adaptive finite element/meshless cou-
pled method based on local maximum entropy shape functions for linear and nonlinear
problems. Computer Methods in Applied Mechanics and Engineering 2013;267:111–132.

27. Hale, J.S., Baiz, P.M.. A locking-free meshfree method for the simulation of shear-
deformable plates based on a mixed variational formulation. Computer Methods in Applied
Mechanics and Engineering 2012;241-244:311–322.

28. Millán, D., Rosolen, A., Arroyo, M.. Thin shell analysis from scattered points with
maximum-entropy approximants. International Journal for Numerical Methods in Engi-
neering 2011;85(6):723–751.

29. Millán, D., Rosolen, A., Arroyo, M.. Nonlinear manifold learning for meshfree finite
deformation thin shell analysis. International Journal for Numerical Methods in Engi-
neering 2013;93(7):685–713.

30. Nissen, K., Cyron, C.J., Gravemeier, V., Wall, W.A.. Information-flux method: a
meshfree maximum-entropy petrov-galerkin method including stabilised finite element
methods. Computer Methods in Applied Mechanics and Engineering 2012;241-244:225–
237.

28

31. Wu, C.T., Young, D.L., Hong, H.K.. Adaptive meshless local maximum-entropy fi-
nite element method for convection-di↵usion problems. Computational Mechanics 2014;
53:189–200.

32. Rosolen, A., Peco, C., Arroyo, M.. An adaptive meshfree method for phase-field models
of biomembranes. Part I: approximation with maximum-entropy approximants. Journal
of Computational Physics 2013;249:303–319.

33. Peco, C., Rosolen, A., Arroyo, M.. An adaptive meshfree method for phase-field models
of biomembranes. Part II: a Lagrangian approach for membranes in viscous fluids. Journal
of Computational Physics 2013;249:320–336.

34. Amiri, F., Anitescu, C., Arroyo, M., Bordas, S.P.A., Rabczuk, T.. XLME interpolants,
a seamless bridge between XFEM and enriched meshless methods. Computational Me-
chanics 2014;53:45–57.

35. Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.. Phase-field modeling
of fracture mechanics in linear thin shells. Theoretical and Applied Fracture Mechanics
2014;69:102–109.

36. Li, B., Peco, C., Millán, D., Arias, I., Arroyo, M.. Phase-field modeling and simula-
tion of fracture in brittle materials with strongly anisotropic surface energy. International
Journal for Numerical Methods in Engineering 2014;:DOI: 10.1002/nme.4726.

37. Arroyo, M., Ortiz, M.. Meshfree Methods for Partial Di↵erential Equations III; vol. 57 of
Lecture Notes in Computational Science and Engineering; chap. Local Maximum-Entropy
Approximation Schemes. Springer; 2007, p. 1–16.

38. Du, Q., Gunzburger, M., Ju, L.. Meshfree, probabilistic determination of point sets and
support regions for meshless computing. Computer Methods in Applied Mechanics and
Engineering 2002;191(13-14):1349–1366.

39. Bradford Barber, C., Dobkin, D.P., Huhdanpaa, H.. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software 1996;22:469–483.

40. Mount, M.D., Arya, S.. A library for approximate nearest neighbor searching. http:

//www.cs.umd.edu/

~

mount/ANN/; 2010.

41. Eijkhout, V.. Distributed sparse data structures for linear algebra operations. Technical
Report CS 92-169; Computer Science Department, University of Tennessee; 1992.

42. Saad, Y.. Iterative Methods for Linear Systems. PWS Publishing, Boston; 1996.

29

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

43. Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V.. A higher-order phase-
field model for brittle fracture: Formulation and analysis within the isogeometric analysis
framework. Computer Methods in Applied Mechanics and Engineering 2014;273:100–
118.

44. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
et al. Portable, extensible toolkit for scientific computation. http://www.mcs.anl.gov/
petsc; 2013.

45. Karypis, G., Kumar, V.. Metis-ParMetis: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 4.0.3. http://www.cs.umn.edu/

~

metis; 2009.

30

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.cs.umn.edu/~metis

	1 Introduction
	2 A standard meshfree scheme
	3 Meshfree optimization concepts
	3.1 Neighborhood coarsening algorithm
	3.2 Compressed meshfree basis functions storage

	4 Numerical examples
	4.1 The neighborhood coarsening algorithm in 2D and 3D problems
	4.2 The compressed meshfree basis functions storage applied to a phase-field fracture model

	5 Conclusions
	Appendix A Optimal storage of local maximum-entropy approximants
	Appendix B Quantification of memory usage
	Appendix C Data structure and specialized algorithms
	Appendix C.1 Data structure to store neighbor lists
	Appendix C.2 Algorithms for matrix structure creation and assembly process
	Appendix C.2.1 CreateElementBasicStructure1D()
	Appendix C.2.2 CreateStructureND()
	Appendix C.2.3 FillStructureND()

