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Summary. The Fokker-Planck partial differential equation is used to compute the probability
density function of the Heston stochastic local volatility model. The solution of the Fokker-
Planck equation is required for the calibration of the leverage function, which plays an important
role in the Heston stochastic local volatility model. The current study describes a numerical
method for solving the nonlinear Fokker-Planck partial differential equation. The solution is
demonstrated to converge to the one generated from the implied volatility surface by comparing
call option prices.

1 INTRODUCTION

The Fokker-Planck partial differential equation (PDE) defines the time evolution of the prob-
ability density function of a stochastic process. When the stochastic process is distribution-
dependent, the resulting Fokker-Planck PDE is nonlinear. The current work presents a numer-
ical solution to a two-dimensional nonlinear Fokker-Planck PDE using a variational approach.
B-Splines with non-uniform knot vectors are used for space discretization.

Implicit Runge-Kutta methods are used to solve the obtained nonlinear system of ordinary
differential equations in the time domain. The initial condition, which is the Dirac delta func-
tion, requires a fine mesh of knots around the non-zero domain of the Dirac delta function.
Furthermore, the time discretization method requires very small time steps to successfully han-
dle the evolution of the initial condition. Since the Fokker-Planck equation has a diffusion term,
the probability density function evolves with time, and the fine mesh of knots is not required
as it is at the initial time steps. The numerical solution employs adaptive mesh generation and
adaptive time steps for both the space and the subsequent time discretization of the PDE. The
numerical experiments are presented using the Heston stochastic local volatility model, which
is a widely used stochastic process for pricing exotic options.

2 HESTON STOCHASTIC LOCAL VOLATILITY MODEL

The following system of stochastic differential equations expresses the dynamic of the Heston
stochastic local volatility model:
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dSt = µStdt+ L(St, t)
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t

(1)

where St represents the price of the underlying asset, Vt represents the variance of the asset
and µ is the rate of return of the asset. θ is long run variance, κ is mean-reversion rate, η is
volatility of volatility, WS

t and W v
t are Wienner processes with correlation ρ. These parameters,

together with V0, which denotes the initial variance, are the Heston parameters.
L(s, t) is the leverage function, which is important in the model above because its successful

calibration allows one to match the volatility surface from the market data.

3 CALIBRATION OF THE LEVERAGE FUNCTION

The leverage function is related to the local volatility function by the mimicking theorem:

L(s, t) =
σLV (s, t)√

E[v|s]
= σLV (s, t)

√ ∫∞
0 p(s, v, t)dv∫∞
0 vp(s, v, t)dv

(2)

where p(s, v, t) denotes the density function of the probability distribution of the stochastic
process defined in eq. 1 and σLV (s, t) represents the local volatility function. The probability
density function can be obtained by solving the Fokker-Planck equation.

3.1 Fokker-Planck equation

In stochastic processes, the Fokker-Planck equation is a partial differential equation that
characterizes the temporal development of the probability density function. The density function
p(s, v, t) of the stochastic process given in eq. 1 is defined by the following equation [1]:

∂p

∂t
+∇ · J = 0

p(s, v, 0) = δ0(s, v)
(3)

where J(s, v, t) represents the probability current, defined to be:

J = bp− 1

2
∇ · (Σp) (4)

δ0(s, v) represents the initial condition of the probability density function, b represents the
drift vector, and Σ represents the diffusion matrix.

The diffusion matrix of the systems of stochastic differential equations, eq. 1, is defined as:

Σ =

[
L(s, t)

√
vs 0

0 η
√
v

] [
1 0

ρ
√

1− ρ2

] [
1 0

ρ
√

1− ρ2

]⊤ [
L(s, t)

√
vs 0

0 η
√
v

]⊤
=

[
L(s, t)2vs2 L(s, t)ρηvs
L(s, t)ρηvs η2v

]
(5)

and the drift vector is defined by:
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b =

(
µs

κ(θ − v)

)
(6)

The Fokker-Planck equation is formulated with reflecting boundary conditions [2]. The cri-
teria indicate that the particle, which in the present application denotes an element from the
price-variance space, is confined within the domain Ω and cannot leave it. This is expressed as
a zero net flow of probability across ∂Ω:

J(s, v, t) · n = 0, (s, v) ∈ ∂Ω (7)

where n is the normal vector to ∂Ω. In the variational formulation of the problem, the
reflecting boundary conditions are called natural boundary conditions.

The probability current J, defined on the system of stochastic differential equations, eq. 1,
has the following expression:

J1 = µsp(s, v, t)− 1

2

∂

∂s

(
L(s, t)2s2vp(s, v, t)

)
− 1

2
ρη

∂

∂v
(L(s, t)svp(s, v, t))

J2 = κ(θ − v)p(s, v, t)− 1

2
ρη

∂

∂s
(L(s, t)svp(s, v, t))− 1

2
η2

∂

∂v
(vp(s, v, t))

(8)

3.2 Space discretization

Finite difference methods and variational methods [3] are among the most common techniques
used to solve partial differential equations. However, although more intricate from a develop-
ment standpoint, variational approaches offer certain benefits, which are detailed below. By
transforming the partial differential equation into its weak form, the variational method seeks
the solution as a linear combination of independent shape functions. Unlike finite difference
techniques, which only yield solutions at discrete nodes, this approach enables differentiation
and integration of the solution. Implementing boundary conditions that involve derivatives on
finite difference schemes is challenging, whereas variational approaches can readily handle all
kinds of boundary conditions. The present study employs variational techniques to achieve
spatial discretization of the Fokker-Planck equation.

The solution of the partial differential equation is approximated by the following expression:

p(s, v, t) ≈
k∑

i=1

φi(s, v)qi(t) (9)

where φi(s, v) are shape (or trial) functions and qi(t) are functions of time, known as gener-
alized coordinates. The shape functions define a finite dimensional space Vh = span{φi(s, v)},
where the solution is sought.

The partial differential equation, eq. 1, has to be zero at each point of the domain Ω. Then,
it follows that: ∫

Ω
w(s, v)

(
∂p(s, v, t)

∂(t)
+∇ · J(s, v, t)

)
dΩ = 0 (10)

for any arbitrary function w(x) ∈ Vh. Integration by part leads to the following weak formu-
lation of the problem:
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∫
Ω
w(s, v)

∂p(s, v, t)

∂(t)
dΩ−

∫
Ω
∇w(s, v) · J(s, v, t)dΩ+

∫
∂Ω

w(x)J(s, v, t) · ndΩ = 0 (11)

Eq. 11 represents the variational form of eq. 1. The last term of eq. 11 might be omitted
since it is satisfied by the natural boundary conditions 7.

A system of first-order ordinary differential equations is derived by expressing the arbitrary
functions wi(s, v) ∈ Vh using the shape functions φi(s, v) substituting equation 9 into equation
11, and integrating the resulting equations:

Mq̇(t) +K (q(t))q(t) = 0

q(0) = q0
(12)

where vector q0 represents the initial condition determined from δ0(s, v) and the basis of
shape functions {φi(s, v)}. The matrix M is often called a mass matrix, and the matrix K
is often called a stiffness matrix. The stiffness matrix depends on the vector of generalized
coordinates q(t) due to the leverage function, which depends on the density p(s, v, t).

A crucial aspect of the suggested variational formulation concerning the precision of the
numerical solution is the careful selection of shape functions. Within the present implementation
of pricing derivatives, the initial condition denotes the present spot price of the underlying asset,
meaning that all probability mass is concentrated at a single location. Hence, δ0(s, v) represents
the Dirac delta function. B-Splines with small support are a viable category of functions capable
of approximating a Dirac delta function. Hence, numerical discretization is performed using B-
Splines.

The dimension of the discretized problem is determined by the quantity of shape functions
employed for the discretization of the density function. Effective approximation of the Dirac
delta function requires the use of B-Splines with a fine mesh. The optimal fine mesh should be
in proximity to the spot price rather than across the entire region. Therefore, it is appropriate
to employ a non-uniform mesh for the B-Splines. Figure 1 illustrates a two-dimensional B-Spline
and an example of non-uniform knots in two-dimensional space.

3.3 Numerical solution of ordinary differential equations

Numerical solution of the system of ordinary differential equations defined by equation 12
is obtained using the Crank-Nicolson method. The nonlinearity of the system of ordinary dif-
ferential equations leads to a corresponding nonlinearity in the resulting algebraic system of
equations. The solution to the nonlinear system is derived by a series of internal loops, wherein
the leverage function is updated and the resulting stiffness matrix is also updated. If the non-
linear solution fail to reach convergence within a small number of internal loops, the time step
is decreased.

The time discretization method needs a small time step because the initial condition is the
Dirac delta function. After a certain point, the time step doesn’t have to be as small. An additive
time step is built into the time discretization method to reduce the computational time.

The initial condition also requires a fine mesh of knots around the spot price and the initial
variance. As the method goes on, this fine mesh is no longer needed because of the diffusion
process. Because of this, an adaptive mesh is also used in the numerical answer.
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Figure 1: Non-uniform knots in two-dimensional space and an example of a two-dimensional
B-Spline.

The probability density function p(s, v, t) is derived continuously at each time step. Next, the
leverage function is calculated using equation 2. The local volatility, a component of the leverage
function, is derived from the implied volatility surface. The leverage function as calculated is
kept in a two-dimensional array, which may be utilized, for instance, in Monte Carlo simulations.

4 RESULTS

An obstacle in solving the Fokker-Planck partial differential equation numerically is the op-
timal choice of the standard deviation to approximate the initial condition that represents the
Dirac delta function. Several two-dimensional normal distributions with varying standard de-
viations are employed as initial condition, and the related solutions of the partial differential
equation are compared.

Figure 2 presents a comparison of the marginal distributions of the asset’s price computed
by employing various standard deviations to approximate the original situation. The standard
deviation values of the initial condition are provided from the local coordinate system. Achieving
convergence of the results requires approximating the initial condition using two-dimensional
normal distributions with a very low standard deviation.

The prices of the respective call options are shown in Figure 3. The reference solution presents
results from the Black-Scholes formula that utilize the same implied volatility surface as the one
used in the computation of the local volatility surface σLV (s, t) provided in equation 2. The
call option prices derived from the numerical solution of the probability density function show
a very good agreement with the call option prices obtained from the volatility surface.

Figure 4 provides a comparison between the number of knots allocated to define the B-Spline
basis of shape functions. The knots in the figure labels indicate the number of knots in one
dimension. It is evident that using inadequate B-Splines results in an incorrect estimation of
the density function, as well as the resultant solution exhibits unsatisfactory oscillations.
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Figure 2: Probability density function due to initial conditions with different standard devia-
tions, T = 0.5.
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Figure 3: Comparison of call option prices computed from the marginal distribution due to
different initial conditions.

5 CONCLUSIONS

This paper presents a numerical approach for solving the nonlinear Fokker-Planck partial
differential equations. The Fokker-Planck partial differential equation (PDE) is employed to
characterize the probability density function of the Heston stochastic local volatility model.

The Fokker-Planck partial differential equation is discretized using a variational approach.
Non-uniform B-Splines are used as shape functions for the space discretization. The numerical
solution uses an adaptable mesh and an adaptive time step to reduce the computational time
while also accurately approximating the time evolution of the initial condition.
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Figure 4: Probability density function with different number of knots, T = 0.5.

It is shown that the solution converges to the one derived from the implied volatility surface
by comparing the prices of call options.
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