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ABSTRACT  

In engineering geology and geotechnical engineering, subsurface soils and rocks are natural geomaterials and exhibit 
inherent variability in stratigraphy due to geological deposition process. Explicit knowledge of subsurface stratigraphy is 
a critical input for the analysis, design, and construction of geotechnical engineering systems. However, the accurate and 
reliable modelling of subsurface geological stratigraphy is challenging due to the limited number of available boreholes 
in practice and the complex nature of soil stratigraphy. This paper presents an innovative machine learning framework 
built upon the neighborhood aggregation technique for the prediction of digitized subsurface geological stratigraphy. To 
predict the stratigraphy at a given point of interest, neighborhood aggregation is first performed to intelligently consolidate 
the stratigraphy information from its neighboring boreholes, resulting in additional features associated with the target 
location. By combining the extra stratigraphy information with conventional location-specific features, the framework 
enhances the predictive capabilities of classical machine learning models at a finer scale. The proposed framework is 
implemented using common machine learning models and is validated using a simulated benchmark 3D example. The 
results of leave-one-out cross-validation demonstrate that the proposed framework can improve the performance of 
classical machine learning models, leading to more reasonable stratigraphy transition and associated uncertainty 
quantification.  
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1. Introduction 

Modern urban development has increasingly 
expanded to the underground space due to the increasing 
demand for land and limited space above ground. To 
ensure a safe and efficient development of underground 
projects, explicit knowledge of the spatial distribution of 
subsurface stratigraphy is essential for the analysis, 
design, and construction of geotechnical systems. 
However, subsurface geological stratigraphy is the result 
of the complex deposition process and loading history 
which are spatially varying, leading to significant 
uncertainty in subsurface stratigraphy and soil properties 
(e.g., Juang et al., 2019; Phoon et al., 2022). In addition, 
the limited availability of boreholes at a specific site 
poses further uncertainty to stratigraphy characterization 
and decision making (e.g., Wang et al., 2022a).  

To this end, a series of traditional models/algorithms 
has been developed in the past decades. Among the 
existing traditional methods, the random field and the 
geostatistical models are frequently used for depicting 
the spatially varying boundaries of different geological 
units based on assumed trend and autocorrelation 
functions (e.g., Cardenas, 2023). The Markov chain 
model is another class of traditional methods that can 
predict the full spatial distribution of soil stratigraphy 
cross-sections by utilizing assumed soil transition 

probability matrices along different directions (e.g., Qi et 
al., 2016). It is worth noting that the accurate 
determination of autocorrelation functions or the soil 
transition probability matrix is often challenging in the 
presence of sparse boreholes at a specific site (e.g., Wang 
et al., 2022b).  

In addition, traditional methods are mostly applied to 
local-scale specific sites and may not well handle 
regional geological modelling involving large number of 
sites. Within the recent trend of digital transformation of 
geotechnical engineering, many machine learning (ML) 
techniques have been adopted for the purpose of 
geotechnical site characterization and have shown great 
potential (e.g., Wang et al., 2019; Wu et al., 2021). 
Generally, extensive boreholes data is a prerequisite to 
reliably train a machine learning model, by leveraging 
the available compiled database of many sites. However, 
the trained machine learning models may still exhibit low 
definition and generalizability when used between two 
sparse boreholes at a specific site. 

This study presents an innovative machine learning 
framework built upon the neighborhood aggregation 
technique for improved prediction of digitized subsurface 
stratigraphy. In contrast to traditional machine learning 
models, it can automatically adapt to available borehole 
data and achieve improved performance at the local 
scale. A simulated benchmark example is illustrated. 



 

2. Proposed framework 

The overall structure of the proposed new machine 
learning framework includes three components: (1) 
preprocessing of borehole log; (2) development of 
additional features using neighborhood aggregation, and 
(3) machine learning modelling. The three components 
are described as follows. 

2.1. Preprocessing of borehole log 

To model the multi-layer pattern of 3D subsurface 
stratigraphy, layer-wise records of available borehole log 
are firstly digitized. As shown in Figure 1, the borehole 
log illustrated on the left contains three soil layers, e.g., a 
0.5m-thick sand layer on the top, a 0.5m-thick silty-sand 
layer on the bottom and a 0.5m-thick clay layer in-
between. This borehole has a depth of 1.5m and can be 
digitized into 15 discrete grid points along the depth with 
a digitization resolution η=0.1m. The digitization 
resolution η is the actual spatial extent represented by a 
discrete grid point in the vertical direction.  

To enable 3D subsurface stratigraphy modelling, each 
discrete grid point is assigned with the 3D spatial 
coordinates information (e.g., X in meters, Y in meters, 
and Z in meters) as the classical three-input features, as 
denoted by the blue tables in Figure 1. The output label 
of each discrete point is the corresponding soil 
classification category y. For example, the three 
considered soil classification categories, i.e., sand, clay, 
and silty-sand, are denoted by 1, 2, and 3, respectively. 
To eliminate the effects of the order/correlation assigned 
to these categorical values, a commonly used one-hot 
encoder is adopted to transform the nominal categorical 
values to one-hot vectors, as shown by the yellow table 
in Figure 1. 
 

 
Figure 1. Basic features development for a digitized borehole 
 

2.2. Development of additional new features 
using neighborhood aggregation 

To improve the prediction performance of machine 
learning models at the local scale, additional features 
besides the basic coordinate features are developed for 
digitized boreholes using neighborhood aggregation. 
This step essentially involves feature engineering in 
machine learning. Neighborhood aggregation is a 
technique used in graph network learning (e.g., graph 
convolution networks), where local neighborhood 
information of a target node is combined or aggregated 
to the target node as additional new features for 
improving prediction accuracy. In the field of graph 

network learning, it has shown advantages in optimizing 
classical models (e.g., Schlichtkrull et al., 2018).  

Figure 2 illustrates the procedure of developing 
depth-based additional features for a target borehole by 
neighborhood aggregation. For example, five available 
boreholes scatter around a target borehole denoted in 
grey in the middle. Each neighboring borehole has 
incorporated different stratification patterns. At each 
depth level, the soil classification information presented 
in all neighboring boreholes is extracted for developing 
additional features of the target borehole. Technically, 
additional new features at a specific digitized grid point 
of the target borehole, denoted by 𝒚 , can be created by 
an aggregating function f of its neighboring digitized grid 
points from neighboring boreholes (e.g., Wang et al., 
2023): 

𝒚 = 𝑓({𝒚 , 𝒚 , ⋯ , 𝒚 }) (1) 

where 𝒚  is the true soil classification (in terms of one-
hot vector) of the i-th digitized grid point from 
neighboring boreholes at the depth level; n is the number 
of neighboring digitized grid points. Inverse distance 
weighting (IDW), a commonly used interpolator, is 
adopted as the aggregation function (e.g., Lu and Wang, 
2008). The new features 𝒚  are then combined with the 
classical input features (i.e., X, Y, and Z) to form the new 
input features. In other words, at each grid point, the three 
classical input features are appended with the three 
additional new features corresponding to the probability 
measure of the occurrence of sand (S), clay (C), and silty-
sand (SS) at that grid point, leading to the six-input 
features tabulated in blue at the bottom of Figure 2. This 
process iterates until the additional features are 
developed for all digitized grid points along the target 
borehole. 
 

 
Figure 2. Additional features development for a digitized 
borehole 
 

2.3. Machine learning modelling 

The last step of the proposed framework involves 
machine learning modelling. Among the many available 
machine learning models, random forest (RF) model is 
adopted in this study for illustration. RF is a bagging 



 

ensemble learning method that consists of multiple 
decision trees constructed by randomly selecting subsets 
of the complete feature space and the training samples 
(e.g., Ho, 1998). Each decision tree is built 
independently, and the results from all decision trees are 
then combined to make the final prediction. The RF 
prediction is formulated as: 

𝒚𝒊 = ∑ 𝒇 (𝒙𝒊)  (2) 

where 𝒚𝒊 is the prediction for the input feature 𝒙𝒊 from 
the decision tree system; 𝒙𝒊 is the i-th input vector (e.g., 
the obtained six input features); 𝒇  is the output of the k-
th decision tree (e.g., one-hot vector of soil 
classification). The best estimate of the soil class is by a 
majority vote from all decision trees. The associated 
prediction uncertainty can be quantified by the summed 
probability estimates for soil classification other than the 
best estimate. 

3. Illustration using a benchmark example 

In this section, the proposed machine learning 
framework is illustrated using a 3D stratigraphy 
benchmark example “S-VG2” proposed by Phoon et al., 
(2022). As shown in Figure 3, the 3D stratigraphy 
example is 20 m long × 20 m wide × 10 m deep, along 
the X, Y, and Z directions, respectively. The model is 
discretized into 20 × 20 × 100 = 40,000 cells. The actual 
resolution of each cell is therefore 1 m long × 1 m wide 
× 0.1 m deep. The configured geometry of this 3D 
example is likely a representative of the scale of a typical 
“small” project site. In this example, three soil layers, i.e., 
sand, clay, and silty-sand, are distributed along the depth 
direction. To incorporate the spatial variability of soil 
stratigraphy, the two boundaries between soil layers are 
inclined to different extents. The boundaries between 
sand and clay, and clay and silty-sand are respectively 
defined as (e.g., Phoon et al., 2022): 

0.05X−0.05Y+Z−2=0 (3) 

−0.05X+0.05Y+Z−6=0 (4) 

The benchmark example “S-VG2” as shown in Figure 3 
represents the complete state of “reality”. Following the 
benchmark procedure of data-driven site characterization 
(DDSC) methods (Phoon et al., 2022), only a subset of 
boreholes is selected from this 3D example as the training 
dataset which represents the measured “reality” of the 3D 
stratigraphy. The “T2” training scenario in Phoon et al., 
(2022) is adopted and denoted by black triangles in 
Figure 3. Twelve testing boreholes which are distinct 
from the training boreholes are denoted by red crosses, 
with testing borehole number labelled. A 3D 
visualization of the six training boreholes and 12 testing 
boreholes is explicitly shown in Figure 4. It reveals that 
the sand and silty-sand layers tend to be thinner, and the 
clay layer tend to be thicker towards (X=20, Y=0). 

To implement the proposed framework, additional 
features are developed for the digitized grid points of 
both training boreholes and testing boreholes. Note that 
for each of the six training boreholes, additional features 
are developed using the remaining five training boreholes 
in the neighborhood. For testing boreholes, all six 

training boreholes are used for developing additional 
features. Subsequently, an RF model is trained based on 
the digitized training boreholes with the new input 
features. The performance of the RF model is then 
evaluated at the 12 testing boreholes. 
 

 
Figure 3. A benchmark 3D soil stratigraphy example 
 

 
Figure 4. Training and testing boreholes 
 

Table 1. Prediction accuracy summary of RF model at 12 
testing boreholes 

Borehole # Classical features New features 

TB1 91% 94% 

TB2 93% 93% 

TB3 98% 99% 

TB4 94% 94 

TB5 93% 96% 

TB6 95% 97% 

TB7 97% 98% 

TB8 95% 94% 

TB9 99% 100% 

TB10 95% 96% 

TB11 93% 94% 

TB12 85% 90% 

 
The prediction performances of RF with classical 

input features and new input features at the 12 testing 
boreholes (e.g., TB1-TB12) are summarized respectively 
in Table 1. Since the “S-VG2” is a benchmark example 
exhibiting simply linear stratigraphy patterns, the overall 
prediction accuracies at these 12 testing boreholes are 
high, e.g. exceeding 85% for both feature scenarios.  



 

A cone penetration test (CPT)-based benchmark 
study in Phoon et al., (2022) reported that among the 12 
testing boreholes, the best, median, and worst prediction 
accuracies obtained by GLasso method in this scenario 
are 0.82, 0.74, and 0.56, respectively. This suggests that 
direct modelling of the soil stratigraphy, rather than the 
associated CPT measurement, yields better accuracy in 
terms of soil stratification.  

In addition, as shown in Table 1, the incorporation of 
new features leads to a slight improvement at 9 out of 12 
testing boreholes. In particular, a 5% improvement in 
accuracy is achieved at TB12. As illustrated in Figure 3, 
the testing borehole TB12 is located around (X=0, 
Y=20), which is outside the range of the six training 
boreholes and presents a quite thin pattern of the clay 
layer. In other words, extrapolation of TB12 is a 
challenging task. The detailed prediction performances at 
TB 12 are shown in Figure 5. It is observed that the actual 
thickness of the clay layer in the middle is relatively thin, 
while the best estimates of two feature scenarios both 
overestimate the thickness of clay layer. The RF with 
new features slightly rectifies the best estimate.  
 

 
Figure 5. Cross-validation results of testing borehole #381 
using random forest algorithm: (a) true borehole; (b) best 
estimate of RF with classical features; (c) best estimate of RF 
with new features; (d) prediction error of (b); (e) prediction 
error of (c); quantified uncertainty of (b); quantified 
uncertainty of (c) 
 

The proposed machine learning framework is also 
applicable to complete 3D subsurface stratigraphy 
modelling. Based on the six training boreholes, 
additional features are developed for each digitized grid 
point at all the remaining locations. The trained RF model 
described above can be re-used to predict the digitized 
3D stratigraphy model. The best estimates of 3D soil 
stratigraphy using RF with classical features and new 
features are shown in Figure 6 and Figure 7, respectively.  

The general distributions of soil stratification are 
comparable in these two scenarios. However, the 
stratigraphic boundaries identified in Figure 6 yield 
unrealistic “step” and noisy patterns. In contrast, the 
results shown in Figure 7 incorporate less noisy patterns 
and show smoother transition of stratigraphic boundaries. 
In addition, the quantified uncertainty of the two feature 
scenarios are shown in Figure 8 and Error! Reference 
source not found., respectively. In both feature 

scenarios, uncertainty bands around the soil stratigraphic 
boundaries are clearly identified. However, the 
uncertainty band in Error! Reference source not found. 
appears to be thicker, suggesting possible variability in 
the stratification boundaries, as shown in Figure 3. The 
results demonstrate that the developed additional features 
improve the prediction performance of RF models. 

 

 
Figure 6. Best estimate of 3D soil stratigraphy prediction 
using random forest with classical features 

 

 
Figure 7. Best estimate of 3D soil stratigraphy prediction 
using random forest with new features 

 

 
Figure 8. Uncertainty of 3D soil stratigraphy prediction using 
random forest with classical features 

 

 
Figure 9. Uncertainty of 3D soil stratigraphy prediction using 
random forest with new features 

 



 

4. Conclusions 

In this paper, an innovative machine learning 
framework built upon the neighborhood aggregation 
technique is presented for the improved prediction of 
digitized subsurface stratigraphy. The development of 
additional features using neighborhood aggregation is 
elaborated. A benchmark example in the literature is used 
to evaluate the performance of the proposed framework. 
Results show that direct modelling of soil stratigraphy 
rather than the associated CPT measurement yields better 
accuracy in terms of soil stratification. The additional 
new features lead to improved prediction performance of 
RF model at the local scale and smoother stratigraphic 
boundaries, in comparison to the classical input features.  
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