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Summary. In the context of vehicles powered by hydrogen fuel cells, hydrogen is stored as
a compressed gas within tanks constructed from carbon fiber composites. These tanks are
engineered with a margin of safety set at 2.25 times the nominal working pressure. Showing a
minimal variability in the tank’s strength will allow for a decrease in this margin of safety. This
can be accomplished by predicting both the vessel’s strength and its associated uncertainties.
In this work, several composite pressure vessels (CPVs) were manufactured through wet fiber
winding, and the parameters that control the winding were recorded as time signals. Some of
these parameters include used fiber length, fiber tension, winding speed, liner pressure and fiber
volume fraction. The winding process is controlled by an algorithm that follows winding paths
based on a defined winding angle and number of circuits around the vessel. These paths are
defined by Euclidean and cylindrical coordinates that can be used to calculate the amount of
fiber used between each coordinate. This obtained fiber used is then matched to the fiber used
signal recorded during winding in order to match the recorded signals to the winding paths.
This allows the parameters to be mapped to the geometry of the vessel. Afterwards, Gaussian
Process Regression (Kriging) is used to obtain random fields over the geometry of the vessel for
each manufacturing parameter of interest. This allows to identify and visualize the distribution
of these parameters over the geometry of the vessel and potentially identify areas of the vessel
where failure is more likely to start.

1 INTRODUCTION

Pressure vessels are crucial in various industries such as aerospace, automotive, energy, and
chemicals, where safely storing and transporting pressurized liquids or gases is of high impor-
tance. Historically, metallic materials like steel and aluminum have been used due to their
mechanical properties, proven track record, and relative low cost [5, 12].

However, metal pressure vessels present disadvantages, such as high weight, corrosion, and
limited lifespan due to fatigue. These issues have driven research into alternative materials,
with fiber-reinforced composites emerging as a promising alternative. Filament winding, a man-
ufacturing process that became prominent in the 1980s and 1990s, is widely used for creating
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composite pressure vessels (CPVs), which are increasingly used across industries. CPVs offer
remarkable strength, relative low weight, and corrosion resistance, making them ideal for storing
and transporting pressurized fluids [5].

CPVs are produced using techniques such as filament winding, tape laying, and automated
fiber placement, which allow precise fiber deposition to optimize strength and stiffness. High-
performance fibers like carbon and aramid further enhance the vessels’ mechanical properties
[5].

The burst pressure performance of CPVs is critical, as they often contain flammable or highly
reactive fluids. Safety and standardization of these vessels are regulated by bodies like the
American Society of Mechanical Engineers (ASME) and the US Department of Transportation
(DOT), which set guidelines for design, manufacturing, testing, and certification. A key aspect
of CPV design is the margin of safety, ensuring the vessel can withstand maximum operating
pressures influenced by factors like temperature fluctuations and impacts. ASME’s Boiler and
Pressure Vessel Code (BPVC) Section X stipulates that burst pressure for glass and carbon
fiber-reinforced CPVs must be at least 3.5 and 2.25 times the design pressure, respectively
[5, 12, 8, 2].

Reducing the safety margin in CPV design can yield significant economic and environmental
benefits. A smaller safety margin reduces vessel size and weight, lowering material and manufac-
turing costs and decreasing the carbon footprint. However, this reduction must not compromise
safety. The safety margin must account for uncertainties in materials, design, and loading con-
ditions. To safely reduce the safety margin, it is essential to accurately predict the vessel’s burst
strength considering manufacturing conditions and their uncertainties [12, 10].

Filament-wound CPVs are characterized by both design and process parameters, such as
fiber tension, winding speed, winding angle, fiber volume fraction, and liner pressure. The
manufacturing process also includes curing, where additional parameters like internal pressure
and temperature cycle are controlled [1].

Finite element analysis (FEA) is one method to predict CPV burst strength, though it
presents limitations [10, 9, 3, 4, 7, 6]. FEA requires assumptions and simplifications that may not
fully represent empirical data. Additionally, including parameters like tow tension and winding
speed in traditional FEA is not straightforward.

Alternatively, black-box modeling uses machine learning (ML) algorithms to identify rela-
tionships between inputs and outputs without access to physical models. For burst strength
prediction, known vessel properties and recorded manufacturing conditions can train ML al-
gorithms against experimental burst data. While this approach requires fewer assumptions, it
lacks transparency and demands extensive experimental data, which is costly.

Furthermore, some ML algorithms include explicit ways to model and propagate uncertainty
information from the input data to the output. This can help with more accurately predict-
ing the burst pressure of CPVs by quantifying the uncertainty observed in the manufacturing
parameters.

Few studies have applied ML to CPV manufacturing. Zolfaghari and Izadi [13] used neural
networks to predict the burst pressure of metal vessels, outperforming several analytical mod-
els. However, such studies are limited, particularly for composite vessels, where the resulting
structure is more complex due to the interaction between fibers and the matrix material.

With this paper, we aim at providing a method to encode the uncertainty in the manufac-
turing process of CPVs as a first step to produce inputs with uncertainty information. These
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then could be used for ML algorithms that predict the burst pressure of these vessels.
We first detail the manufacturing process and data acquisition methods used to produce

CPVs. Then we present the methodology for mapping the manufacturing parameters to the
vessel geometry and performing Gaussian Process Regression to generate the corresponding
fields over the vessel. Finally, we discuss the results of the manufacturing parameter mapping
and uncertainty quantification.

2 VESSEL MANUFACTURING AND DATA ACQUISITION

The vessels are produced in an assembly line designed for industrial-scale vessel manufac-
turing, without adherence to laboratory conditions, therefore these vessels are representative of
industry conditions. The manufacturing process involves wet winding of carbon fiber around a
polyamide 6 liner with a specified layup comprising hoop and helical layers. The exact layup
details are not disclosed due to commercial confidentiality. Each vessel has a uniform nominal
laminate thickness of 11.4 mm and outside liner dimensions of 304.6 by 140 mm (Figure 1). Key
parameters such as tow tension, liner pressure, winding speed, fiber length used, and winding
time are monitored during the winding process.

Figure 1: Schematic view of the vessel’s liner and liner dimensions. Dimensions in mm.

In this work the variables of interest are the tow tension and winding speed. Therefore five
configurations are defined in a design of experiments (DOE) where a baseline configuration with
nominal values is defined, and six other configuration where the variables of interest are varied.
This design of experiment can be found in Table 1.

Table 1: Design of experiments. Nominal values are omitted due to commercial confidentiality.

Configuration Tow tension [N] Winding speed [m/s]

Baseline nominal nominal
Configuration 1 2x nominal nominal
Configuration 2 0.5x nominal nominal
Configuration 3 nominal 0.5x nominal
Configuration 4 nominal 0.25x nominal

The layup of the vessel is programmed in machine code based on the winding angle. This
machine code allows to generate the coordinates of the nominal winding paths, in Euclidean and
cylindrical coordinates. These winding paths do not take into account the other manufacturing
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parameters that control the winding, such as the winding speed or tow tension (these parameters
and encoded in other parts of the machine code), therefore a common set of winding coordinates
exist regardless of the vessel configuration. These coordinates form one of the fundamental data
used in this methodology.

During winding of the CPVs an initial length of fiber is manually tied around the liner by the
operator, afterwards a control arm rotates the entire vessel around the longitudinal axis, such
that the fiber wraps around the vessel as it unwinds from the spool(s). To control the winding
angle the tows are translated in the longitudinal direction of the vessel. This can be achieved in
either of two ways: a guide eye (where all the fiber tows converge at the end of the production
line, before being deposited around the vessel) moves in the longitudinal direction of the vessel
while the last remains stationary (but rotating). An alternative is for the vessel to be attached
to a mechanical arm that translates the entire vessel longitudinally while the guide eye remains
stationary. In this work, the vessel is translated by a mechanical arm.

The other necessary data consists of the time signals recorded during the winding of the
vessel. These signal are recorded at a rate of 10 Hz, with several signals beyond the scope of
this work being recorded. The recorded signals of interest in this work are the following:

• Tow tension;

• Winding speed;

• Length of fiber used.

The vessel is composed of hoop and helical layers. Hoop layers are close to 90◦ (in relation
to the longitudinal axis of the vessel) and are the most load bearing layers. These layers are
responsible for constraining the vessel in the radial direction. In contrast, the helical layers
are wound with lower angles and are responsible for constraining the vessels in the longitudinal
direction and covering the dome sections of the vessel. Each layer is composed of several circuits
(a single winding pass over the length of the vessel). Hoop layers are composed of two to three
circuits, while helical layers are composed of up to 49 circuits. These two types of layers and
winding paths are represented in Figure 2.

3 METHODOLOGY

In the manufacturing setup used in this work, the information about the position of the me-
chanical arm (and therefore the vessel) is not recorded. This means that we cannot immediately
match the coordinates of the winding path to the manufacturing data and it requires additional
processing steps to match the manufacturing data to the vessel geometry.

3.1 Matching winding path length to manufacturing winding length

To match these data an alternative method is necessary. Since the fiber length is available
from the manufacturing data (Table 2) and we can calculate the vector length (which is equiva-
lent to the fiber used) between each of the coordinates of the winding paths (Table 3), we have
a quantity that we can use to match between both sets of data.

However, due to the fact that the winding path is common to all vessels and does not take into
account the variations caused by the differences in tow tension and liner pressure (higher tow
tension leads to lower amount of fiber required to complete a circuit, and higher liner pressure
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Figure 2: Example of hoop winding paths (left) and helical winding paths (right).

Table 2: Example of the data acquired during winding. Only the relevant parameters are shown.

Time step [s] Tow tension [N] Winding speed [m/s] Used fiber [m]

0.0 T1 S1 0.0
t2 T2 S2 L2

t3 T3 S3 L3

... ... ... ...
tm Tm Sm Lm

Table 3: Example of the winding path parameters. Cylindrical coordinates are also recorded but not
required. Vector length is calculated a posteriori.

X pos. Y pos. Z pos. Vector length [mm]
[mm] [mm] [mm]

X1 Y1 Z1 0.0

X2 Y2 Z2

√
(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2

X3 Y3 Z3

√
(X3 −X2)2 + (Y3 − Y2)2 + (Z3 − Z2)2

... ... ... ...

Xn Yn Zn

√
(Xn −Xn−1)2 + (Yn − Yn−11)2 + (Zn − Zn−1)2

leads to higher amount of fiber being necessary), we need to perform corrections to the winding
coordinates to properly match these data.

During the winding of the vessel it can be empirically observed that when the winding reaches
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one edge of vessel the winding speed drastically reduces to allow a change of direction of the
robotic arm in the opposite direction to begin the next circuit. We can leverage this knowledge
to match each circuit’s local maximum longitudinal position (Z coordinate, which corresponds
to a change in the direction of the robotic arm) to the corresponding speed valley detected in the
winding speed (which correspond to a point when the winding reached one edge of the vessel).
This procedure is illustrated in Figure 3 for hoop layers and Figure 4 for helical layers. Figure
5 shows the same matching procedure for helical layers for a reduced number of circuits.

Figure 3: Matching procedure for hoop layers. The original winding path (dashed line) is moved such
that the maximum point (change in longitudinal direction) matches the speed valley (change in winding
direction). Speed values are omitted due to confidentiality

When the used fiber length datapoints are matched between both sets of data we can interpo-
late the Euclidean coordinates from the winding paths onto the manufacturing datapoints and
reconstruct a 3D plot of the relevant winding parameters (winding speed and tension) over the
geometry of the vessel. This mapping is then used to reconstruct the manufacturing parameter’s
field through Gaussian regression (also called Kriging).

3.2 UV mapping and Gaussian regression

To allow the data to be used as input for ML algorithms (such as Convolutional Neural
Networks) it is typically necessary to represent the mapping in 2D space (UV space). However, to
maintain the continuity of the regression field as a two-dimensional representation of a cylindrical
space it is necessary to perform the Gaussian regression from the 3D space, then unwrap the
prediction grid into 2D space. This will also allow to perform data augmentation by shifting the
U axis origin of the 2D mapping, since this represents an arbitrary position of the UV mapping
over the cylindrical surface. This UV mapping is performed using Eq. 1, where X, Y, Z represent
the 3D Euclidean coordinates of the manufacturing datapoints.
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Figure 4: Matching procedure for helical layers. The procedure is the same as for hoop layers, but for
a larger number of circuits. Speed values are omitted due to confidentiality.

Figure 5: Detail of the matching procedure for helical layers, showing a reduced number of circuits.
Speed values are omitted due to confidentiality

U = arctan 2(Y,X);V = Z (1)

Gaussian Process Regression (GPR) is a non-parametric probabilistic model widely used
in machine learning and statistical analysis [11]. Gaussian Regression allows for predictions
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in regression models and uncertainty estimation of the regression model. Unlike traditional
regression models that rely on fixed parametric forms, GPR uses prior distributions that are
defined by the choice of kernel (covariance function).

To perform Gaussian regression a Matérn kernel is used. This is a general kernel that is often
used when few assumptions about the from of the underlying data can be made. This kernel’s
form is shown in Eq. 2, where d(xi, xj) represents the Euclidean distance between every possible
pair of points, Kν(·) is a modified Bessel function and Γ(·) is the gamma function. The value
nu controls the smoothness of the generated functions. A value of 1.5 was used. The value l is
called the correlation length, and it controls how far in the input space the points are correlated
with each other. This can be a single value (called an isotropic kernel), where the correlation
length is the same in all directions, or a vector (called an anisotropic kernel), where the value
can be different in each direction. An anisotropic kernel was used, and the value of l is optimized
through the maximization of the likelihood.

k(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi, xj)

)ν

Kν

(√
2ν

l
d(xi, xj)

)
(2)

4 RESULTS AND DISCUSSION

Following the procedure elaborated in the Methodology, we matched the winding path data
to the manufacturing data of a hoop layer (the first hoop layer) and a helical layer of a vessel
with nominal configuration.

The procedure of matching the winding path data to the manufacturing data is illustrated
in Figures 3 to 5. After the matching procedure, the winding path coordinates are interpolated
into the existing manufacturing length datapoints and used to reconstruct a 3D mapping of the
manufacturing data.

Figure 6 shows the winding parameter’s (winding speed and tow tension) mapping to the
geometry of a hoop layer. Here, it can be observed the initial length of fiber that was tied-in
by the operator as concentration of points with lower winding speed at the base of the vessel.
This is verified by empirical observations, as this portion of the vessel is wound at a lower
speed. In the winding speed mapping we can also observe at the top edge of the vessel points
with lower winding speed. This mapping confirms that the winding starts at the bottom edge
and proceeds to the top edge, where the winding changes direction and the next circuit begins.
Figure 6(b) shows a more uniform distribution of the tow tension for a hoop layer, but we can
still observe points of higher and lower tension around the top and bottom edges of the vessel.
We can attribute these to a delay in the tension control of the production line: as the winding
approaches the edge of the vessel the radius changes slightly and this requires an adjustment
of the tension control system to compensate for this deviation. However, a slight delay in the
control system leads to momentary over- and under-tension of the fibers around the edges.

We then perform the UV mapping and Gaussian regression of these mappings. These can be
seen in Figures 7 and 8 for the winding speed and winding tension, respectively. From these we
can observe the Gaussian regression of the speed field preserves more of the anisotropy that we
would expect from the direction of the winding, but both conform well to their respective UV
mapping.

The same procedure is then repeated for a helical layer, with the results shown in Figures 9
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Figure 6: Hoop layer datapoints represented in 3D space after interpolation of the manufacturing
datapoints to the matched winding path. a) Normalized winding speed values. b) Normalized tow
tension values. Values where normalize due to commercial confidentiality.

to 11. The same observations can be made for the helical layers: we see a higher winding speed
in the middle of the vessel (this is corroborated by empirical observations) and more extreme
values of tension at the edges of the vessel. In Figure 10 we can also see some points with
lower winding speed in the middle of the vessel. The reason for these can are not obvious, but
highlight the importance and usefulness of this method: it allows to detect deviations from the
normal winding conditions that would be masked by simply averaging the information in the
signal.

5 CONCLUSIONS

In this paper we presented a methodology to map manufacturing variability to the geometry
of composite pressure vessels. By recording time signals of relevant manufacturing parameters
during the winding process, and matching these signals to the winding paths resultant from
defining the winding angles of each layer, we produced a mapping of the winding speed and tow
tension over the vessel’s surface. Gaussian Regression was then applied to these maps to generate
continuous fields of these parameters, highlighting the spatial variability of these parameters.

This approach provides valuable insights into the distribution of the manufacturing param-
eter’s variability in composite pressure vessels, which is critical for predicting the performance
(burst pressure) and identifying potential critical areas of the vessel. The mapping and regression
techniques developed in this work can be used to generate input data with uncertainty infor-
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Figure 7: Hoop layer UV mapping of the winding speed (left) and corresponding Gaussian regression of
the winding speed field (right).

Figure 8: Hoop layer UV mapping of the winding tension (left) and corresponding Gaussian regression
of the winding tension field (right).

mation for machine learning models aimed at predicting burst pressure and other performance
metrics of CPVs.

Future work will focus on continuing this methodology, using the generated mappings as
inputs to convolutional neural networks for prediction of the burst pressure of CPVs.
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Figure 9: Helical layer datapoints represented in 3D space after interpolation of the manufacturing
datapoints to the matched winding path. a) Normalized winding speed values. b) Normalized tow
tension values. Values where normalize due to commercial confidentiality.

Figure 10: Helical layer UV mapping of the winding speed (left) and corresponding Gaussian regression
of the winding speed field (right).
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Figure 11: Helical layer UV mapping of the winding speed (left) and corresponding Gaussian regression
of the winding speed field (right).
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