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Summary. This paper presents a performance and stability assessment of a two-dimensional,
three-field conjugate heat transfer problem encompassing an aerodynamic flow domain, a thin
solid domain, and a cooling fluid channel. The study focuses on the chosen coupling relaxation
methods and boundary conditions at the coupling interfaces.

Both fluid domains are modeled using Navier-Stokes equations for compressible fluids, while
the solid domain employs heat transfer equations akin to those for aluminium. The coupling
procedure adopts a Dirichlet-Neumann approach, enabling heat flux and temperature exchanges
between domains. To enhance system stability, especially in pure Neumann boundary condition
scenarios, the coupling is executed using a pseudo-transient approach. This strategy allows
transient solutions for the solid domain and stationary convergence for the fluid domains.

Coupling relaxation methods are applied to stabilise the convergence process. Factors im-
pacting performance and stability are analysed by adjusting selected coupling parameters while
keeping solver parameters constant. The study underscores the importance of relaxation meth-
ods in addressing overestimated interface values during partitioned coupling, thereby improving
the coupling convergence rate.

This assessment provides insights into optimising the coupling strategies for thin-walled con-
jugate heat transfer problems under multi-physical interactions, revealing critical dynamics that
ensure computational efficiency and system stability.
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1 INTRODUCTION

The Cluster of Excellence SE²A - Sustainable and Energy Efficient Aviation at the Technische
Universität Braunschweig is proposing new concepts and solutions for green aviation. One of
its projects deals with the development of skin heat exchangers for unconventional aircraft
configurations, such as the blended wing body, which are used to dissipate the waste heat
generated by the fuel cells that power the aircraft.

For future research a coupling framework will be developed that can couple different solvers
in a partitioned approach, which are optimised for their respective domain of application. In
addition to coupling the three domains (aerodynamic flow, structure and cooling fluid flow),
the framework will be able to optimise heat exchanger size, position, cooling channel layout
and geometry. The aim is to provide a coupling framework capable of designing such skin heat
exchangers for given geometries and flight missions.

A coupled simulation of such complexity, including the overall aerodynamics of the aircraft
with thermal and mechanical structural behaviour, the relatively small cooling ducts and the
optimisation of all disciplines, is not feasible even with the computing power currently available
in a reasonable amount of time. Therefore, investigating every small detail of the simulation
process for performance improvement can be beneficial to the overall performance of the sub-
sequent expensive simulations. Since the individual solver time is estimated to be the most
computationally expensive part of the simulation, one of the crucial things to investigate is the
reduction of coupling iterations.

In this work a simple two-dimensional case derived from [1] is set up. The three-field conjugate
heat transfer problem consists of two fluid domains and a thin-walled solid domain in between.
The whole system is modelled in a partitioned approach using separate cases in OpenFOAM®

v2012 [2].
The focus is on the coupling relaxation schemes, which are applied to the interface vectors

exchanged between adjacent domains. The coupling relaxation schemes used are a constant
relaxation factor, the Aitken method for coupled systems [3] and a multi-vector quasi-newton
method proposed by Bogaers [4]. All these relaxation methods have already been implemented
in the coupling framework.

In addition, after the relaxation method is evaluated, the coupling algorithm between two
domains is reversed, i.e. instead of the conventional Dirichlet-Neumann approach or flux for-
ward/temperature back (FFTB) algorithm, a Neumann-Dirichlet approach or temperature for-
ward/flux back (TFFB) algorithm is used [5].

2 IMPLEMENTATION

When coupling three different solvers to each other, their communication needs to be clearly
defined and set up before the actual computation starts. The communication definition includes
the determination of quantities that are exchanged, the mapping method used for adjacent
domains, the boundary conditions that are applied to the individual solver domains, the coupling
convergence criteria and coupling sequence.

In the introduced project the open source framework KratosMultiphysics and its included
CoSimulationApplication [7] (CoSim in the following) is used as the coupling framework. CoSim
already includes several mapping types, convergence accelerators and convergence criteria defi-
nitions. Also, the communication is fully defined and is ready to use. Given this, there are only
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a few settings such as the coupling sequence and specification of external solvers that need to
be adjusted.

CoSim uses a well-defined internal MappingApplication that takes care of appropriate quan-
tity mapping between the solver domains. Apart from conform meshes it can also handle non-
conform meshes. However, for the sake of simplicity and to reduce mapping overhead, conform
meshes are used in the present work.

When using CoSim any black-box solver that can be controlled remotely and provides access
to its models interface data can be used. All that needs to be done is the development of
a SolverWrapper, which connects the input-output (IO) interface of the black-box solver or
software to the one provided by CoSim (see figure 1). In this SolverWrapper various functions
need to be implemented for CoSim to know what to do when certain functions are called. The
internal sequence of each individual solver is fully defined and only the coupling sequence needs
to be specified.

Figure 1: Solver implementation in KratosMultiphysics’ CoSimulationApplication

3 NUMERICAL METHODS

3.1 Geometry and mesh

The overall geometry, which is derived from Birken [1], consists of three domains, from top to
bottom namely the aerodynamic flow, a thin flat plate and the cooling fluid channel, respectively
(see figure 2). All domains are connected via their coupling interfaces Γair−solid and Γwater−solid

and discretised using a Cartesian grid.

Isothermal 300 K

Figure 2: Scheme of the used two dimensional case setup
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The aerodynamic flow domain contains four sections. All four sections have a symmetry
boundary condition at the top side and a geometrical height of 45mm. A uniform fixed value
inlet condition, where the air flow enters the domain is applied at x = 0mm.

On the bottom side several different boundary conditions are imposed. The first 50mm with
a symmetry boundary condition are followed by a 50mm long heated wall that enforces a no-
slip boundary condition and helps developing a proper boundary layer upstream of the coupling
interface. At x = 100mm the coupling interface starts with a length of 200mm. The last section
is a 100mm symmetry boundary condition, which ends with the flow outlet at x = 400mm.

The mesh consists of 18, 240 cells, with 96 cells in y-direction. The first and last sections
each have 20 equally distributed cells in x-direction. In the second section of the domain are
30 cells in x-direction with a constant mesh expansion ratio of δe/δs = 0.3 towards the coupling
interface. The coupling interface itself is constructed of 120 equally distributed boundary faces.
All four sections have the same constant mesh expansion ratio in the y-direction, which results
in the smallest cell right next to the coupling interface having a height of δb = 2.4 · 10−3mm.

The solid domain has a height of 1mm to approach a thin-walled aircraft skin. The top and
bottom sides are the two coupling interfaces Γair−solid and Γwater−solid towards the aerodynamic
flow and the cooling channel, respectively. The boundary conditions of the left and right side
are idealised as adiabatic. The domain has a total cell count of 2, 520 cells with 120 cells in
x-direction and 21 cells in y-direction. All cells have the same size and are equally distributed
over the domain.

The cooling channel domain consists of three sections with a height of 20mm. The flow enters
at the right side at x = 350mm and leaves the domain at x = 50mm. The bottom side of the
domain is governed by a symmetry boundary condition. As in the aerodynamic domain, there
is a no-slip boundary condition upstream of the coupling interface. Additionally, to resemble a
cooling channel, there is also a no-slip boundary condition applied downstream of the coupling
interface. Both peripheral walls are considered adiabatic.

This domain is discretised into 9, 000 cells. All sections have 50 cells in the y-direction, which
are imposed by a constant mesh expansion. The smallest cell right next to the coupling interface
has a height of 2.06 · 10−3mm. The domain section that includes the coupling interface has 120
cells in x-direction, the other two sections each have 30 cells in x-direction. In the x-direction
no mesh expansion is applied. The selected grid sizes at the coupling boundaries result in y+

values of approximately y+ ≈ 0.25 for both fluid domains, thereby ensuring an adequate level
of accuracy of the thermal quantities exchanged.

3.2 Boundary conditions and initialisation

The boundary conditions are chosen to be in a realistic range to resemble the expensive
future simulations. However, to reduce computational cost of this simple case, both fluid cases
are considered laminar. As the initially introduced aircraft is estimated to have a cruise altitude
of around 8, 000m, the air temperature can be approximated at 233K. With a Mach number
of Ma∞ = 0.87 on the wing, the resulting velocity is around c = 265 m

s . The spatially and
temporally constant wall temperature of the upstream wall is Twall = 300K.

For the cooling fluid channel, the temperature is estimated to be Tcool = 368K with a velocity
of ccool = 2 m

s in the negative x-direction. The walls upstream and downstream of the coupling
interface enforce a no-slip condition on the velocity field and a zero-gradient condition on the
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temperature field.
For both fluid domains the coupling interface acts like a no-slip wall. In the baseline case,

Dirichlet (temperature) boundary conditions are applied to the fluid domains and Neumann
(heat flux) boundary conditions to the solid domain (FFTB). Later this coupling implementation
is varied. The outlet boundary condition for both aerodynamic flow and cooling channel is a
zero-gradient condition for both energy and momentum.

The initial spatially constant temperature of the solid domain is initialised with Tinit = 300K.

3.3 Governing equations and material properties

Both fluid domains are governed by the Navier-Stokes equations for compressible fluids (see
equations (1) to (3)), which are implemented in the solver rhoSimpleFoam of OpenFOAM®

v2012. As the fluid flows are computed in a stationary manner, the unsteady terms are not
considered. A detailed derivation of the Navier-Stokes equations can be found in e.g. [6]. The
used symbols are described in table 1.

∇ · (ρv) = 0 (1)

∇ · (ρvv) = −∇p+ µ∇2v+ fb (2)

∇ · (ρve) = −∇ · q̇s −∇(pv) +∇ · (τ · v) + fb · v+ q̇V (3)

Table 1: Variables in the Navier-Stokes equations

symbol meaning

∇ nabla operator
ρ density
v velocity vector
p pressure
µ dynamic viscosity
fb body forces vector
e specific total energy
τ stress tensor
q̇S rate of heat transfer across surfaces
q̇V rate of heat source or sink

For the sake of simplicity, the present modelled fluids are chosen to be air and water. However,
non of the material characteristics remain constant in the respective domain and are approxi-
mated using polynomials that were derived from [8]. For the aerodynamic domain the viscosity
µ is modelled using the transformed Sutherland law [9] (see equation (4)).

µ = As

√
T

1+TS/T
(4)

with the model coefficients for air

As = 1.46 · 10−6

TS = 110.4K
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and temperature T .

The solid domain is solved using the solver solidFoam of OpenFOAM® v2012. The temper-
ature distribution in the domain is solved by solidFoam using equation (5).

ρcp
∂T

∂t
= λ∇2T + q̇V (5)

where ρ is the density of the solid domain, cp the specific heat capacity and λ the heat conduc-
tivity. T is the temperature and q̇V the heat fluxes that are applied to the finite volumes. The
material characteristics of the solid domain are similar to the ones of aluminium (see table 2)
and approximated being constant and isotropic.

Table 2: Material properties for the solid domain

property value unit

density ρ 2,700 kg/m3

specific heat capacity cp 837 J/(kg ·K)
heat conductivity λ 236 W/(m ·K)

3.4 Coupling procedure

To define the coupling procedure each domain has to be specified in terms of the applied
boundary conditions at their coupling interface. Thermal coupling takes place with a Dirichlet-
Neumann or Neumann-Dirichlet approach. Thus, heat fluxes and temperatures at the coupling
interfaces are exchanged. A typical approach is to use the FFTB scheme [5], in which the heat
fluxes are applied to the domain that possesses higher heat conductivity. Applying that approach
to both coupling interfaces, the solid domain becomes a Neumann-Neumann problem since the
heat fluxes are applied at both coupling interfaces Γ. With the side walls set as zero-gradient
boundary conditions, the domain problem is defined by Neumann boundary conditions only.

A pure Neumann problem without any Dirichlet or Robin boundary conditions is challenging
to model in a stationary manner. This is due to the fact that a stationary solution does not
exist if the net heat flux of the domain is not equal to zero. Treating all individual cases in a
stationary manner is therefore likely to result in divergence of the solid domain in terms of the
temperature distribution.

In order to achieve some sort of a natural damping of the imposed heat fluxes, the domains are
coupled using a pseudo-transient approach. This approach involves solving the solid domain in
a transient manner, while the fluid domains converge to a stationary solution for each iteration.
As a result, the heat fluxes are only applied for a limited amount of time, which results in a
more stable coupled system.

During the computation of the solid domain, the boundary conditions are applied temporally
constant, starting with an initial heat flux of qi=0

Γj ,k=0 = 0 for the first iteration i in time step k

and at interface j. After that, the resulting temperatures T0
Γj ,0

at the interfaces are sent to the

respective fluid domains Ωj , which return the new heat fluxes q1
Γj ,0

that result after convergence.
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Additionally a coupling relaxation scheme is applied to the temperature vectors Ti
Γj ,k

that
are sent to the fluid domains. To monitor the coupling residual in every iteration, these vectors
are stored and compared to each other. As soon as changes of these vectors in between two
iterations are smaller than the coupling criteria of ϵc < 5 · 10−5, the time step converges and the
next time step is started with the obtained temperature fields of the individual domains.

3.5 Used relaxation methods

In this study the impact of the coupling parameters is investigated. Therefore, the individ-
ual solver parameters are not changed during this parameter study. However, some coupling
parameters are adjusted to investigate the individual impact on performance and stability.

During partitioned coupling the interface values are often overestimated. To stabilise and
thus speed up the coupling convergence, relaxation methods are used to relax the exchanged
fields. In this section the used relaxation methods are addressed briefly.

When the temperature interface vectors are relaxed, the new temperature vector Ti
Γ,k is

calculated as a mixture between the temperature field of the last iteration Ti−1
Γ,k and the new

unrelaxed temperature field T̃
i

Γ,k according to equation (6).

Ti
Γ,k = Ti−1

Γ,k · (1− ωi) + T̃
i

Γ,k · ωi (6)

In this study three methods have been used for relaxation. The constant and Aitken methods
both calculate the relaxation factor ωi for the next coupling iteration. The third method is a
multi-vector quasi-newton method (MVQN in the following) that uses a system Jacobian to
calculate the relaxed temperature field.

The constant relaxation scheme is straightforward and uses a predefined relaxation factor
that remains constant at all times (see equation (7)).

ωi = ωi−1 = const (7)

The Aitken method for coupled systems [3] calculates the new relaxation factor while con-
sidering the change of the interface temperature of the last two iterations. For that, some
computational inexpensive calculations are required (see equation (8)).

ωi = ωi−1 · (ri−1)T (ri−ri−1)
(ri−ri−1)2

(8)

with ri being the residual of the current, still unrelaxed, temperature vector and the one before

ri = T̃
i

Γ −Ti−1
Γ . (9)

For the previous iteration the already relaxed temperature vectors are taken into account.

The MVQN method [4], similar to the Broyden method, constructs an approximated Ja-
cobian matrix that transforms the residuals of the temperature vector to the changes of the
heat flux vectors. Unlike the Broyden method, the MVQN method does not only consider the
previous iterations of the same time step, but can also take previous time steps into account
by iteratively updating its Jacobian matrix. A disadvantage of this method is that it requires
to store matrices and that its overhead is bigger than e.g. the Aitken method because of more
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expensive computational operations. However, it was shown that this method can reduce the
number of coupling iterations, which has a favourable effect on the overall performance [4].

To approximate the system Jacobian matrix, two observation matrices, which include the
residuals of the last iterations, are constructed using

∆TΓj ,k = [Ti
Γj ,k

−Ti−1
Γj ,k

,Ti−1
Γj ,k

−Ti−2
Γj ,k

, ...,T2
Γj ,k

−T1
Γj ,k

] (10)

∆QΓj ,k = [qi
Γj ,k

− qi−1
Γj ,k

,qi−1
Γj ,k

− qi−2
Γj ,k

, ...,q2
Γj ,k

− q1
Γj ,k

] (11)

where the matrix ∆QΓj ,k stores the heat fluxes of coupling interface j of the last i iterations
of time step k. Now an approximated Jacobian matrix can be constructed that relates the
changes of the temperature vectors to the changes of the heat flux vectors of the current time
step.

JΓj ,k ∆TΓj ,k = ∆QΓj ,k (12)

After each coupling iteration, the Jacobian matrix gets updated with respect to a specific
updating rule (see equation (13)). This equation also requires the old Jacobian matrix JΓj ,k−1

to include information about the previous time step.

JΓj ,k = JΓj ,k−1 +
(
∆Qk − JΓj ,k−1∆TΓ,k

)((
∆Tk

)T
∆Tk

)−1 (
∆Tk

)T
(13)

To provide a Jacobian matrix in the very first iteration, the initial Jacobian matrix is defined
as J0

0 = [0]. Because the MVQN method requires at least two coupling iterations, the first two
iterations are relaxed using the constant method mentioned before.

4 RESULTS

In all cases, the simulation results obtained after six seconds of simulation time are identical
(see figure 3). This outcome is to be expected, given that only the coupling procedure was
modified.
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Figure 3: Transient temperature trend for three different points in the solid domain
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In figure 3 three different curves are shown. Each of the curves show the temperature be-
haviour of different points in the solid domain. The three points are centred in between the two
interfaces and at different x-positions and show that the solid domain’s temperature starts at
the initial spatially constant temperature of 300K. The stationary solution approaches temper-
atures of around 365K, 364K and 362K, respectively. The simulation results are found to be
in a realistic range.

4.1 Relaxation method assessment

First, the three different relaxation methods discussed in section 3.5 were investigated. Several
simulations were carried out for this purpose. As the MVQN method allows the specification
of how many past iterations should be considered to construct the Jacobian matrix, it will be
referred to as MVQN η in the following, where η is the number of past iterations considered. To
see the differences induced by the number of past iterations considered, three different values
for η were chosen.

As can be seen in figure 4, the total number of iterations tends to decrease as the time step
size increases. This may seem surprising at first, but on reflection it becomes clear that this is
because fewer time steps are needed to reach the end of the simulation. Especially towards the
end of the simulation, the time steps often only need a single iteration to converge.

In general, the relaxation method appears to have less influence on the sum of coupling
iterations than the time step size itself. Especially with a time step size of ∆t = 0.02 s and
excluding the constant relaxation method, the other methods all required a similar total number
of coupling iterations for the entire simulation.

Furthermore, it can be observed that the constant relaxation method is the least effective
of the three methods, as it results in the highest number of coupling iterations required. This
was to be expected. In fact, the constant relaxation method did not converge in a reasonable
number of coupling iterations using a time step size of ∆t = 0.04 s. This is indicated by the
black X’s in figure 4.
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Figure 4: Sum of coupling iterations for different relaxation methods
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In the simulation with the smallest time step size, the MVQN method shows the best perfor-
mance considering the last three coupling iterations. However, even with a slightly larger time
step, the Aitken method is superior.

In this particular case, the MVQN method appears to require fewer coupling iterations the
fewer past iterations are considered. Nevertheless, the MVQN method also appears to be sensi-
tive to its parameter η. At a time step size of ∆t = 0.04 s this is no longer the case. Here, MVQN
3 required almost as many coupling iterations as the inefficient constant relaxation scheme at a
smaller time step size of ∆t = 0.03 s.

Overall, it can be observed that the Aitken method shows good performance and excellent
stability in the proposed test case. Also in terms of the computational overhead caused by the
coupling schemes, the Aitken method shows good performance (see figure 5). Obviously, the
computational overhead of the constant relaxation method is the lowest, since no calculations
are required at all. For this reason it is not shown in figure 5.
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Figure 5: Percentual Kratos overhead of simulation time for different relaxation methods

The MVQN scheme shows a similar computational overhead regardless of its parameter η
and is around 8-9 %. Initially, it also appears that the computational overhead decreases with
increasing time step size. However, the simulation with the largest time step size shows an
outlier at η = 3. This is the same simulation that also shows the worst performance in terms of
the number of coupling iterations within the simulation with the largest time step size.

4.2 Neumann-Dirichlet approach

The difficulties mentioned in section 3.4, which necessitated a pseudo-transient approach, do
not apply if at least one Dirichlet boundary condition is imposed to the solid domain. This
opens up the possibility of a fully steady-state analysis where all subproblems are considered to
be stationary. This type of analysis could dramatically speed up the process.

For this reason, an attempt was made to change the boundary coupling method from an
FFTB to a TFFB coupling scheme between the aerodynamic and solid domains. In this case, a
temperature boundary condition is applied at the upper solid boundary and the resulting heat
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flux is returned to the aerodynamic domain.
As can be seen in figure 6, the temperature rises into extreme regions using this approach.

This is because the solid domain returns a high heat flux due to the large temperature gradient
between the aerodynamic flow and the initial temperature of the solid domain. As these high
heat fluxes are applied to the aerodynamic domain for an infinite time due to its stationarity,
the aerodynamic interface temperatures rise to exorbitant levels. Two reasons for this are the
low thermal mass of the air, which facilitates the extreme temperature rise, and the low thermal
conductivity, which prevents the temperature from being distributed across the aerodynamic
domain. Both result in a hot spot just above the coupling interface.
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Figure 6: Temperatures of the aerodynamic domain at y = 0 just before the aerodynamic solver crashes

It is evident that a relaxation factor may be selected in accordance with the objective of
achieving convergence in the simulation. However, this relaxation factor would be exceedingly
small in comparison to the extent of the heat flux and would also be based on an educated guess.
The use of exceedingly small relaxation factors results in an unreasonable number of coupling
iterations and is therefore not practical.

5 CONCLUSION AND OUTLOOK

In this paper three different coupling relaxation schemes have been applied to a three-field
two-dimensional conjugate heat transfer problem. The results show that the Aitken scheme is
superior in most simulations. This is due to its good performance in determining an appropriate
relaxation factor and its robustness. The MVQN method was sensitive to the number of previous
iterations used to construct its Jacobian matrix, sometimes leading to divergence. It was also, in
most cases, not as efficient as the Aitken scheme in terms of the number of coupling iterations.

The conventional Dirichlet-Neumann coupling (FFTB) seems to be the only stable method to
couple the outer aerodynamics and the solid domain with reasonable relaxation factors. This is
due to the low thermal mass and conductivity of the aerodynamic domain. Due to the resulting
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very high heat fluxes applied to the aerodynamic domain, the temperature rises excessively and
leads to a solver crash.

For further studies, the Aitken scheme is used due to its performance, robustness and low com-
putational cost. It needs to be investigated whether the Neumann-Dirichlet approach (TFFB)
shows the same behaviour for other cases, such as 3D flow applications, and what happens when
this method is applied to the interface between the solid and cooling fluid domains. Due to the
different velocities, densities and viscosities, there are different heat transfer coefficients that
could lead to a successful Neumann-Dirichlet coupling. This could be a way of obtaining a
Dirichlet boundary condition in each domain, opening up the possibility of a fully steady-state
analysis, saving a great deal of computing power.
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