Published in Computers and Geotechnics, Vol. 96, pp. 103-117, 2018
DOI: 10.1016/j.compgeo.2017.10.016
A new computational technique for the simulation of 2D and 3D fracture propagation processes in saturated porous media is presented. A non-local damage model is conveniently used in conjunction with interface elements to predict the degradation pattern of the domain and insert new fractures followed by remeshing. FIC-stabilized elements of equal order interpolation in the displacement and the pore pressure have been successfully used under complex conditions near the undrained-incompressible limit. A bilinear cohesive fracture model describes the mechanical behaviour of the joints. A formulation derived from the cubic law models the fluid flow through the crack. Examples in 2D and 3D, using 3-noded triangles and 4-noded tetrahedra respectively, are presented to illustrate the accuracy and robustness of the proposed methodology.
Published on 01/01/2018
DOI: 10.1016/j.compgeo.2017.10.016
Licence: CC BY-NC-SA license